Vertical Distribution, Diurnal Evolution, and Source Region of Formaldehyde During the Warm Season Under Ozone-Polluted and Non-Polluted Conditions in Nanjing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observation Site
2.2. Details of Spectral Analysis and Retrieval of Vertical Profile
2.3. Potential Source Region Analysis
2.4. WRF Configuration and Evaluation
2.5. Ancillary Data
3. Results
3.1. Overview of the Observations
3.2. Vertical Distribution of HCHO
3.3. The Variation Rates of HCHO Concentrations at Different Altitudes
4. Discussion
4.1. The Relationship Between HCHO Concentrations and Meteorological Parameters at Different Altitudes
4.2. Source Region and Their Impacts on HCHO at Different Altitudes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, L.; Jacob, D.J.; Liu, X.; Huang, G.; Li, K.; Liao, H.; Wang, T. An Evaluation of the Ability of the Ozone Monitoring Instrument (OMI) to Observe Boundary Layer Ozone Pollution across China: Application to 2005–2017 Ozone Trends. Atmos. Chem. Phys. 2019, 19, 6551–6560. [Google Scholar] [CrossRef]
- Lu, X.; Hong, J.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Wang, T.; Gao, M.; Zhao, Y.; Zhang, Y. Severe Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. [Google Scholar] [CrossRef]
- Yang, W.; Chen, H.; Wang, W.; Wu, J.; Li, J.; Wang, Z.; Zheng, J.; Chen, D. Modeling Study of Ozone Source Apportionment over the Pearl River Delta in 2015. Environ. Pollut. 2019, 253, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Barletta, B.; Meinardi, S.; Sherwood Rowland, F.; Chan, C.-Y.; Wang, X.; Zou, S.; Yin Chan, L.; Blake, D.R. Volatile Organic Compounds in 43 Chinese Cities. Atmos. Environ. 2005, 39, 5979–5990. [Google Scholar] [CrossRef]
- An, J.; Zhu, B.; Wang, H.; Li, Y.; Lin, X.; Yang, H. Characteristics and Source Apportionment of VOCs Measured in an Industrial Area of Nanjing, Yangtze River Delta, China. Atmos. Environ. 2014, 97, 206–214. [Google Scholar] [CrossRef]
- Baudic, A.; Gros, V.; Sauvage, S.; Locoge, N.; Sanchez, O.; Sarda-Estève, R.; Kalogridis, C.; Petit, J.-E.; Bonnaire, N.; Baisnée, D.; et al. Seasonal Variability and Source Apportionment of Volatile Organic Compounds (VOCs) in the Paris Megacity (France). Atmos. Chem. Phys. 2016, 16, 11961–11989. [Google Scholar] [CrossRef]
- Xie, M.; Shu, L.; Wang, T.; Liu, Q.; Gao, D.; Shu, L.; Zhuang, B.; Han, Y.; Li, M.; Chen, P. Natural Emissions under Future Climate Condition and Their Effects on Surface Ozone in the Yangtze River Delta Region, China. Atmos. Environ. 2017, 150, 162–180. [Google Scholar] [CrossRef]
- Dieu Hien, V.T.; Lin, C.; Thanh, V.C.; Kim Oanh, N.T.; Thanh, B.X.; Weng, C.-E.; Yuan, C.-S.; Rene, E.R. An Overview of the Development of Vertical Sampling Technologies for Ambient Volatile Organic Compounds (VOCs). J. Environ. Manag. 2019, 247, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Ren, C.; Nie, W.; Chi, X. Enhanced Secondary Pollution Offset Reduction of Primary Emissions during COVID-19 Lockdown in China. Natl. Sci. Rev. 2021, 8, nwaa137. [Google Scholar] [CrossRef]
- Simon, H.; Reff, A.; Wells, B.; Xing, J.; Frank, N. Ozone Trends Across the United States over a Period of Decreasing NOx and VOC Emissions. Environ. Sci. Technol. 2015, 49, 186–195. [Google Scholar] [CrossRef]
- Yan, Y.; Pozzer, A.; Ojha, N.; Lin, J.; Lelieveld, J. Analysis of European Ozone Trends in the Period 1995–2014. Atmos. Chem. Phys. 2018, 18, 5589–5605. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s Anthropogenic Emissions since 2010 as the Consequence of Clean Air Actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- Zhao, Q.; Bi, J.; Liu, Q.; Ling, Z.; Shen, G.; Chen, F.; Qiao, Y.; Li, C.; Ma, Z. Sources of Volatile Organic Compounds and Policy Implications for Regional Ozone Pollution Control in an Urban Location of Nanjing, East China. Atmos. Chem. Phys. 2020, 20, 3905–3919. [Google Scholar] [CrossRef]
- Sillman, S. The Relation between Ozone, NOx and Hydrocarbons in Urban and Polluted Rural Environments. Atmos. Environ. 1999, 33, 1821–1845. [Google Scholar] [CrossRef]
- Kleinman, L. The Dependence of Tropospheric Ozone Production Rate on Ozone Precursors. Atmos. Environ. 2005, 39, 575–586. [Google Scholar] [CrossRef]
- Hong, Q.; Liu, C.; Hu, Q.; Zhang, Y.; Xing, C.; Su, W.; Ji, X.; Xiao, S.-H. Evaluating the Feasibility of Formaldehyde Derived from Hyperspectral Remote Sensing as a Proxy for Volatile Organic Compounds. Atmos. Res. 2021, 264, 105777. [Google Scholar] [CrossRef]
- Luecken, D.; Hutzell, W.; Strum, M.; Pouliot, G. Regional Sources of Atmospheric Formaldehyde and Acetaldehyde, and Implications for Atmospheric Modeling. Atmos. Environ. 2012, 47, 477–490. [Google Scholar] [CrossRef]
- Huang, C.; Wang, H.L.; Li, L.; Wang, Q.; Lu, Q.; de Gouw, J.A.; Zhou, M.; Jing, S.A.; Lu, J.; Chen, C.H. VOC Species and Emission Inventory from Vehicles and Their SOA Formation Potentials Estimation in Shanghai, China. Atmos. Chem. Phys. 2015, 15, 11081–11096. [Google Scholar] [CrossRef]
- Sivakumaran, V.; Hölscher, D.; Dillon, T.J.; Crowley, J.N. Reaction between OH and HCHO: Temperature Dependent Rate Coefficients (202–399 K) and Product Pathways (298 K). Phys. Chem. Chem. Phys. 2003, 5, 4821–4827. [Google Scholar] [CrossRef]
- McKee, K.; Blitz, M.A.; Pilling, M.J. Temperature and Pressure Studies of the Reactions of CH3O2, HO2, and 1,2-C4H9O2 with NO2. J. Phys. Chem. 2016, 120, 1408–1420. [Google Scholar] [CrossRef]
- Parrish, D.D.; Ryerson, T.B.; Mellqvist, J.; Johansson, J.; Fried, A.; Richter, D.; Walega, J.G.; Washenfelder, R.A.; de Gouw, J.A.; Peischl, J.; et al. Primary and Secondary Sources of Formaldehyde in Urban Atmospheres: Houston Texas Region. Atmos. Chem. Phys. 2012, 12, 3273–3288. [Google Scholar] [CrossRef]
- Mellouki, A.; Wallington, T.J.; Chen, J. Atmospheric Chemistry of Oxygenated Volatile Organic Compounds: Impacts on Air Quality and Climate. Chem. Rev. 2015, 115, 3984–4014. [Google Scholar] [CrossRef]
- Kleinman, L.I.; Daum, P.H.; Lee, J.H.; Lee, Y.; Nunnermacker, L.J.; Springston, S.R.; Newman, L.; Weinstein-Lloyd, J.; Sillman, S. Dependence of Ozone Production on NO and Hydrocarbons in the Troposphere. Geophys. Res. Lett. 1997, 24, 2299–2302. [Google Scholar] [CrossRef]
- Duncan, B.N.; Yoshida, Y.; Olson, J.R.; Sillman, S.; Martin, R.V.; Lamsal, L.N.; Hu, Y.; Pickering, K.; Retscher, C.; Allen, D.J.; et al. Application of OMI Observations to a Space-Based Indicator of NOx and VOC Controls on Surface Ozone Formation. Atmos. Environ. 2010, 44, 2213–2223. [Google Scholar] [CrossRef]
- Jin, X.; Fiore, A.M.; Murray, L.T.; Valin, L.C.; Lamsal, L.N.; Duncan, B.; Boersma, K.F.; De Smedt, I.; Abad, G.G.; Chance, K.; et al. Evaluating a Space-Based Indicator of Surface Ozone-NOx-VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends. J. Geophys. Res. Atmos. 2017, 122, 10439–10461. [Google Scholar] [CrossRef]
- Jin, X.; Fiore, A.; Boersma, K.F.; Smedt, I.D.; Valin, L. Inferring Changes in Summertime Surface Ozone–NOx–VOC Chemistry over U.S. Urban Areas from Two Decades of Satellite and Ground-Based Observations. Environ. Sci. Technol. 2020, 54, 6518–6529. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, X.; Tan, Z.; Wang, W.; Yang, Y.; Zhu, Y.; Yang, S.; Song, M.; Chen, S.; Wang, H.; et al. Assessing the Ratios of Formaldehyde and Glyoxal to NO2 as Indicators of O3–NOx–VOC Sensitivity. Environ. Sci. Technol. 2021, 55, 10935–10945. [Google Scholar] [CrossRef]
- Luo, Y.; Dou, K.; Fan, G.J.; Huang, S.; Si, F.; Zhou, H.; Wang, Y.; Pei, C.; Tang, F.; Yang, D.; et al. Vertical Distributions of Tropospheric Formaldehyde, Nitrogen Dioxide, Ozone and Aerosol in Southern China by Ground-Based MAX-DOAS and LIDAR Measurements during PRIDE-GBA 2018 Campaign. Atmos. Environ. 2020, 226, 117384. [Google Scholar] [CrossRef]
- Schroeder, J.; Crawford, J.H.; Fried, A.; Weinheimer, A.J. New Insights into the Column CH2O/NO2 Ratio as an Indicator of Near-Surface Ozone Sensitivity. J. Geophys. Res. Atmos. 2017, 122, 8885–8907. [Google Scholar] [CrossRef]
- Stutz, J.; Kim, E.S.; Platt, U.; Bruno, P.; Perrino, C.; Febo, A. UV-Visible Absorption Cross Sections of Nitrous Acid. J. Geophys. Res. 2000, 105, 14585–14592. [Google Scholar] [CrossRef]
- Bobrowski, N.; Hönninger, G.; Galle, B.; Platt, U. Detection of Bromine Monoxide in a Volcanic Plume. Nature 2003, 423, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Wagner, T.; Dix, B.; Friedeburg, C.V.; Frieß, U.; Sanghavi, S.; Sinreich, R.; Platt, U. MAX-DOAS O4 Measurements: A New Technique to Derive Information on Atmospheric Aerosols—Principles and Information Content. J. Geophys. Res. Atmos. 2004, 109, D14203. [Google Scholar] [CrossRef]
- Frieß, U.; Sihler, H.; Sander, R.; Pöhler, D.; Yilmaz, S.; Platt, U. The Vertical Distribution of BrO and Aerosols in the Arctic: Measurements by Active and Passive Differential Optical Absorption Spectroscopy. J. Geophys. Res. 2011, 116, D00R04. [Google Scholar] [CrossRef]
- Wang, Y.; Dörner, S.; Donner, S.; Böhnke, S.; De Smedt, I.; Dickerson, R.R.; Dong, Z.; He, H.; Li, Z.; Li, Z.; et al. Vertical Profiles of NO2, SO2, HONO, HCHO, CHOCHO and Aerosols Derived from MAX-DOAS Measurements at a Rural Site in the Central Western North China Plain and Their Relation to Emission Sources and Effects of Regional Transport. Atmos. Chem. Phys. 2019, 19, 5417–5449. [Google Scholar] [CrossRef]
- Liu, X.-H.; Zhang, Y.; Cheng, S.-H.; Xing, J.; Zhang, Q.; Streets, D.G.; Jang, C.; Wang, W.-X.; Hao, J.-M. Understanding of Regional Air Pollution over China Using CMAQ, Part I Performance Evaluation and Seasonal Variation. Atmos. Environ. 2010, 44, 2415–2426. [Google Scholar] [CrossRef]
- Liu, X.-H.; Zhang, Y.; Xing, J.; Zhang, Q.; Wang, K.; Streets, D.G.; Jang, C.; Wang, W.-X.; Hao, J.-M. Understanding of Regional Air Pollution over China Using CMAQ, Part II. Process Analysis and Sensitivity of Ozone and Particulate Matter to Precursor Emissions. Atmos. Environ. 2010, 44, 3719–3727. [Google Scholar] [CrossRef]
- Li, L.; An, J.Y.; Zhou, M.; Yan, R.S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y.J.; Tao, S.K.; Qiao, L.P.; et al. Source Apportionment of Fine Particles and Its Chemical Components over the Yangtze River Delta, China during a Heavy Haze Pollution Episode. Atmos. Environ. 2015, 123, 415–429. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Hermans, C.; Simon, P.C.; Carleer, M.; Colin, R.; Fally, S.; Mérienne, M.F.; Jenouvrier, A.; Coquart, B. Measurements of the NO2 Absorption Cross-Section from 42,000 cm−1 to 10,000 cm−1 (238–1000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transf. 1998, 59, 171–184. [Google Scholar] [CrossRef]
- Serdyuchenko, A.; Gorshelev, V.; Weber, M.; Chehade, W.; Burrows, J.P. High Spectral Resolution Ozone Absorption Cross-Sections—Part 2: Temperature Dependence. Atmos. Meas. Tech. 2014, 7, 625–636. [Google Scholar] [CrossRef]
- Volkamer, R.; Spietz, P.; Burrows, J.; Platt, U. High-Resolution Absorption Cross-Section of Glyoxal in the UV–Vis and IR Spectral Ranges. J. Photochem. Photobiol. A Chem. 2005, 172, 35–46. [Google Scholar] [CrossRef]
- Fleischmann, O.C.; Hartmann, M.; Burrows, J.P.; Orphal, J. New Ultraviolet Absorption Cross-Sections of BrO at Atmospheric Temperatures Measured by Time-Windowing Fourier Transform Spectroscopy. J. Photochem. Photobiol. A Chem. 2004, 168, 117–132. [Google Scholar] [CrossRef]
- Meller, R.; Moortgat, G.K. Temperature Dependence of the Absorption Cross Sections of Formaldehyde between 223 and 323 K in the Wavelength Range 225-375 Nm. J. Geophys. Res. Atmos. 2000, 105, 7089–7101. [Google Scholar] [CrossRef]
- Chance, K.V.; Spurr, R.J.D. Ring Effect Studies: Rayleigh Scattering, Including Molecular Parameters for Rotational Raman Scattering, and the Fraunhofer Spectrum. Appl. Opt. 1997, 36, 5224. [Google Scholar] [CrossRef] [PubMed]
- Wagner, T.; Beirle, S.; Brauers, T.; Deutschmann, T.; Frieß, U.; Hak, C.; Halla, J.D.; Heue, K.P.; Junkermann, W.; Li, X.; et al. Inversion of Tropospheric Profiles of Aerosol Extinction and HCHO and NO 2 Mixing Ratios from MAX-DOAS Observations in Milano during the Summer of 2003 and Comparison with Independent Data Sets. Atmos. Meas. Tech. 2011, 4, 2685–2715. [Google Scholar] [CrossRef]
- Wang, Y.; Apituley, A.; Bais, A.; Beirle, S.; Benavent, N.; Borovski, A.; Bruchkouski, I.; Chan, K.L.; Donner, S.; Drosoglou, T.; et al. Inter-Comparison of MAX-DOAS Measurements of Tropospheric HONO Slant Column Densities and Vertical Profiles during the CINDI-2 Campaign. Atmos. Meas. Tech. 2020, 13, 5087–5116. [Google Scholar] [CrossRef]
- Lin, J.C. Lagrangian Modeling of the Atmosphre: An Introduction. In Lagrangian Modeling of the Atmosphere; American Geophysical Union (AGU): Washington, DC, USA, 2012; pp. 1–11. [Google Scholar] [CrossRef]
- Kim, J.; Jang, J.-A.; Oh, Y.-S.; Lee, H.; Joo, S.; Kim, S.; Boo, K.-O.; Lee, Y.G. Anthropogenic Carbon Dioxide Origin Tracing Study in Anmyeon-Do, South Korea: Based on STILT-Footprint and Emissions Data. Sci. Total Environ. 2023, 894, 164677. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Wang, X.; Gao, M.; Li, K.; Zhang, Y.; Yue, X.; Zhang, Y. Rapid Increases in Warm-Season Surface Ozone and Resulting Health Impact in China Since 2013. Environ. Sci. Technol. Lett. 2020, 7, 240–247. [Google Scholar] [CrossRef]
- Ban, J.; Su, W.; Zhong, Y.; Liu, C.; Li, T. Ambient Formaldehyde and Mortality: A Time Series Analysis in China. Sci. Adv. 2022, 8, eabm4097. [Google Scholar] [CrossRef]
- Ling, Z.H.; Zhao, J.; Fan, S.J.; Wang, X.M. Sources of Formaldehyde and Their Contributions to Photochemical O3 Formation at an Urban Site in the Pearl River Delta, Southern China. Chemosphere 2017, 168, 1293–1301. [Google Scholar] [CrossRef]
- Ren, B.; Xie, P.; Xu, J.; Li, A.; Qin, M.; Hu, R.; Zhang, T.; Fan, G.; Tian, X.; Zhu, W.; et al. Vertical characteristics of NO2 and HCHO, and the Ozone Formation Regimes in Hefei, China. Sci. Total. Environ. 2022, 823, 153425. [Google Scholar] [CrossRef]
- Tian, X.; Xie, P.; Xu, J.; Li, A.; Wang, Y.; Qin, M.; Hu, Z. Long-Term Observations Of Tropospheric NO2, SO2 and HCHO by MAX-DOAS in Yangtze River Delta Area, China. J. Environ. Sci. 2018, 71, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Liu, C.; Hong, Q.; Liu, H.; Wu, H.; Lin, J.; Song, Y.; Chen, Y.; Liu, T.; Hu, Q.; et al. Vertical Distributions and Potential Sources of Wintertime Atmospheric Pollutants and the Corresponding Ozone Production on the Coast of Bohai Sea. J. Environ. Manag. 2022, 319, 115721. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.; Zhu, L.; Xing, C.; Hu, Q.; Lin, H.; Zhang, C.; Zhao, C.; Liu, T.; Su, W.; Liu, C. Inferring Vertical Variability and Diurnal Evolution of O3 Formation Sensitivity Based on the Vertical Distribution of Summertime HCHO and NO2 in Guangzhou, China. Sci. Total Environ. 2022, 827, 154045. [Google Scholar] [CrossRef] [PubMed]
- Lew, M.M.; Rickly, P.S.; Bottorff, B.P.; Reidy, E.; Sklaveniti, S.; Léonardis, T.; Locoge, N.; Dusanter, S.; Kundu, S.; Wood, E.; et al. OH and HO2 radical chemistry in a midlatitude forest: Measurements and model comparisons. Atmos. Chem. Phys. 2022, 20, 9209–9230. [Google Scholar] [CrossRef]
- Li, Z.; Smith, K.A.; Cappa, C.D. Influence of relative humidity on the heterogeneous oxidation of secondary organic aerosol. Atmos. Chem. Phys. 2018, 18, 14585–14608. [Google Scholar] [CrossRef]
- Pan, L.; Xu, J.; Tie, X.; Mao, X.; Gao, W.; Chang, L. Long-Term Measurements of Planetary Boundary Layer Height and Interactions with PM2.5 in Shanghai, China. Atmos. Pollut. Res. 2019, 10, 989–996. [Google Scholar] [CrossRef]
- Wang, D.; Huo, J.; Duan, Y.; Zhang, K.; Ding, A.; Fu, Q.; Luo, J.; Fei, D.; Xiu, G.; Huang, K. Vertical Distribution and Transport of Air Pollutants during a Regional Haze Event in Eastern China: A Tethered Mega-Balloon Observation Study. Atmos. Environ. 2021, 246, 118039. [Google Scholar] [CrossRef]
Parameter | Refer Data Source | Fitting Interval (nm) | |
---|---|---|---|
O4/NO2 | HCHO | ||
Wavelength range | 338–370 | 322.5–358 | |
NO2 | 298 K a [39] | √ | √ |
NO2 | 220 K a [39] | √ | × |
O3 | 223 K b [40] | √ | √ |
O3 | 243 K b [40] | √ | √ |
O4 | 293 K [41] | √ | √ |
BrO | 223 K [42] | √ | √ |
HCHO | 297 K [43] | √ | √ |
Ring | Calculated with QDOAS [44] | √ | √ |
Polynomial degree | Order 5 | Order 5 | |
Intensity offset | Constant | Constant |
Parameter | Month | MB | NME/% | RMSE | R |
---|---|---|---|---|---|
T2 (°C) | Apr | 0.1 | 8.5 | 2.0 | 0.95 |
May | 1.2 | 8.0 | 2.2 | 0.90 | |
Jun | 0.1 | 5.2 | 1.8 | 0.90 | |
RH2 (%) | Apr | −3.0 | 13.8 | 10.2 | 0.88 |
May | −8.7 | 19.7 | 11.4 | 0.82 | |
Jun | −1.6 | 10.9 | 9.2 | 0.84 | |
WS10 (m/s) | Apr | 1.2 | 38.7 | 1.2 | 0.66 |
May | 0.8 | 34.1 | 1.2 | 0.64 | |
Jun | 0.9 | 33.0 | 1.5 | 0.67 |
Parameter | Altitude | T (°C) | RH (%) | WS (m/s) |
---|---|---|---|---|
NO3P days | surface | 0.74 ** | 0.04 | −0.03 |
0.6 km | 0.69 ** | 0.10 | −0.03 | |
1 km | 0.69 ** | −0.10 | −0.11 | |
O3P days | surface | 0.53 ** | 0.55 ** | −0.30 |
0.6 km | 0.50 ** | 0.53 ** | −0.30 | |
1 km | 0.42 * | 0.10 | −0.44 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, K.; Xie, M.; Wang, Y.; Lu, Y. Vertical Distribution, Diurnal Evolution, and Source Region of Formaldehyde During the Warm Season Under Ozone-Polluted and Non-Polluted Conditions in Nanjing, China. Remote Sens. 2024, 16, 4313. https://doi.org/10.3390/rs16224313
Cheng K, Xie M, Wang Y, Lu Y. Vertical Distribution, Diurnal Evolution, and Source Region of Formaldehyde During the Warm Season Under Ozone-Polluted and Non-Polluted Conditions in Nanjing, China. Remote Sensing. 2024; 16(22):4313. https://doi.org/10.3390/rs16224313
Chicago/Turabian StyleCheng, Keqiang, Mingjie Xie, Yuhang Wang, and Yahan Lu. 2024. "Vertical Distribution, Diurnal Evolution, and Source Region of Formaldehyde During the Warm Season Under Ozone-Polluted and Non-Polluted Conditions in Nanjing, China" Remote Sensing 16, no. 22: 4313. https://doi.org/10.3390/rs16224313
APA StyleCheng, K., Xie, M., Wang, Y., & Lu, Y. (2024). Vertical Distribution, Diurnal Evolution, and Source Region of Formaldehyde During the Warm Season Under Ozone-Polluted and Non-Polluted Conditions in Nanjing, China. Remote Sensing, 16(22), 4313. https://doi.org/10.3390/rs16224313