D-InSAR-Based Analysis of Slip Distribution and Coulomb Stress Implications from the 2024 Mw 7.01 Wushi Earthquake
Abstract
:1. Introduction
2. Coseismic Deformation Analysis
2.1. D-InSAR Data Processing
2.2. Coseismic Deformation Field
3. Inversion of Fault Parameters and Slip Distribution
3.1. Uniform Slip Model
Source of Study | Epicenter | Strike (°) | Dip (°) | Rake (°) | Length (km) | Width (km) | Magnitude |
---|---|---|---|---|---|---|---|
USGS [3] | 78.64°E, 41.26°N | 235 | 45 | 42 | -- | -- | 7.0 |
GCMT [4] | 78.57°E, 41.19°N | 236 | 48 | 47 | -- | -- | 7.0 |
IPGP [5] | 78.59°E, 41.29°N | 234 | 50 | 51 | -- | -- | 7.1 |
CEA [6] | 78.63°E, 41.22°N | 250 | 42 | 59 | -- | -- | 7.0 |
Nai (2024) [40] | 78.64°E, 41.23°N | 230 | 55 | 42 | 34.7 | 10.5 | 7.05 |
Li (2024) [41] | 78.65°E, 41.22°N | 229 | 62.4 | 50.45 | 35.4 | 7.1 | 7.0 |
Zhao (2024) [42] | 78.60°E, 41.19°N | 228 | 67 | 60 | 34 | 14.2 | 7.0 |
Guo (2024) [43] | -- | 235 | 55 | -- | -- | -- | 7.03 |
Yu (2024) [44] | -- | 229 | 62.8 | 49.8 | -- | -- | -- |
Qiu (2024) [33] | 78.66°E, 41.23°N | 229.17 | 59.88 | 44.34 | 83.7 | 13.17 | 7.02 |
This study | 78.66°E, 41.22°N | 228.34 | 61.88 | -- | 34.8 | 15.8 | 7.01 |
3.2. Coseismic Slip Model
4. Regional Seismic Risk Assessment
5. Discussion
5.1. Seismogenic Structure of the Mw 7.1 Wushi Earthquake
5.2. The Triggering Relationship of Aftershock
6. Conclusions
- (1)
- The Sentinel-1A coseismic deformation fields for this earthquake, obtained from both ascending and descending tracks, display a nearly elliptical surface uplift pattern. The maximum line-of-sight displacement is approximately 81.1 cm for the ascending track (T056) and 65.7 cm for the descending track (T136).
- (2)
- The results from the uniform slip model indicate that the fault associated with the 2024 Mw 7.01 Wushi earthquake has a strike angle of 228.34° and a dip of 61.88°. The fault slip distribution results indicate that the primary slip is concentrated between 5 and 25 km depths, reaching a maximum of 3.2 m at 10.2 km. This coseismic slip produced a seismic moment of 3.69 × 101⁹ N·m, equating to a moment magnitude of Mw 7.01. The fault movement combined thrust and left-lateral strike-slip components, suggesting that the seismogenic fault is a secondary structure within the M-SF.
- (3)
- Based on the analysis of static Coulomb failure stress changes, the 2024 Mw 7.01 Wushi earthquake has increased the future seismic risk in several areas, including the KKSF, DSXF, PNF, KTF, parts of the NWSF southeast of the epicenter, parts of the TSF northwest of the epicenter, and parts of the M-SF west of the epicenter. These active faults require ongoing monitoring for seismic hazards.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; Wu, P.; Gao, F.; Huang, C.; Gao, J. Research on the Fault Surface of the 2003 Jiashi Ms6.8 Earthquake Based on Aftershock Data. Earthquake 2013, 33, 65–73. [Google Scholar]
- Zhang, B.; Qian, L.; Li, T.; Chen, J.; Xu, J.; Yao, Y.; Fang, L.; Xie, C.; Chen, J.; Liu, G.; et al. Geological Disasters and Surface Ruptures of January 23, 2024 Ms7.1 Wushi Earthquake, Xinjiang, China. Seismol. Geol. 2024, 46, 220–234. [Google Scholar] [CrossRef]
- Guo, J.; Luan, Y.; Li, Z.; Liu, X.; Li, C.; Chang, X. Mozambique Flood (2019) Caused by Tropical Cyclone Idai Monitored From Sentinel-1 and Sentinel-2 Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8761–8772. [Google Scholar] [CrossRef]
- Chang, X.; Guo, J.; Wang, X. Detecting the Amount of Eroded and Deposited Sand Using DInSAR. Terr. Atmos. Ocean. Sci. 2011, 22, 187–194. [Google Scholar] [CrossRef]
- Hong, W.; Lin, Y.; Wei, L.; Zhang, H.; Feng, S.; Teng, F.; Wang, Y. Multi-aspect Aperture Synthesis for 3D Radar Imaging: A Review. Sens. Imaging 2023, 25, 1. [Google Scholar] [CrossRef]
- Loew, A.; Mauser, W. Generation of geometrically and radiometrically terrain corrected SAR image products. Remote Sens. Environ. 2007, 106, 337–349. [Google Scholar] [CrossRef]
- Wu, C.; Aimaierji, W.; Cai, Z.; Wu, M.; Chen, J. Discovery of Late Quaternary Activity on the Eastern Segment of the Wuqia Fault in Southwestern Tianshan and Its Tectonic Implications. Seismol. Geol. 2014, 36, 976–990. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Wang, Q. Crustal attenuation structure of the Tianshan tectonic belt and its spatiotemporal variations. Front. Earth Sci. 2023, 11, 1094151. [Google Scholar] [CrossRef]
- Li, J.; Gao, Y.; Wang, Q. Anisotropic zoning in the upper crust of the Tianshan Tectonic Belt. Sci. China Earth Sci. 2021, 64, 651–666. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, G.; Qiao, X.; Wang, X.; You, X. Recent rapid shortening of crust across the Tianshan Mts. and relative motion of tectonic blocks in the north and south. Chin. Sci. Bull. 2000, 45, 1995–1999. [Google Scholar] [CrossRef]
- Zubovich, A.V.; Wang, X.-Q.; Scherba, Y.G.; Schelochkov, G.G.; Reilinger, R.; Reigber, C.; Mosienko, O.I.; Molnar, P.; Michajljow, W.; Makarov, V.I.; et al. GPS velocity field for the Tien Shan and surrounding regions. Tectonics 2010, 29, TC6014. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.-K. Present-Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications. J. Geophys. Res. 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, W.; Zhang, P.; Zhang, Z.; Jia, Q.; Yu, J.; Zhang, H.; Yao, Y.; Liu, J.; Han, G.; et al. Oblique Thrust of the Maidan Fault and Late Quaternary Tectonic Deformation in the Southwestern Tian Shan, Northwestern China. Tectonics 2019, 38, 2625–2645. [Google Scholar] [CrossRef]
- Li, J.; Yao, Y.; Li, R.; Yusan, S.; Li, G.; Freymueller, J.T.; Wang, Q. Present-Day Strike-Slip Faulting and Thrusting of the Kepingtage Fold-and-Thrust Belt in Southern Tianshan: Constraints From GPS Observations. Geophys. Res. Lett. 2022, 49, e2022GL099105. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, P.; Zhang, Z.; Zheng, W.; Xu, B.; Wang, W.; Yu, Z.; Dai, X.; Zhang, B.; Zang, K. Slip partitioning and crustal deformation patterns in the Tianshan orogenic belt derived from GPS measurements and their tectonic implications. Earth Sci. Rev. 2023, 238, 104362. [Google Scholar] [CrossRef]
- Sainoki, A.; Schwartzkopff, A.K.; Jiang, L.; Mitri, H.S. Numerical Modeling of Complex Stress State in a Fault Damage Zone and Its Implication on Near-Fault Seismic Activity. J. Geophys. Res. 2021, 126, e2021JB021784. [Google Scholar] [CrossRef]
- Wang, H.; Liu, M.; Cao, J.; Shen, X.; Zhang, G. Slip rates and seismic moment deficits on major active faults in mainland China. J. Geophys. Res. 2011, 116, B02405. [Google Scholar] [CrossRef]
- Li, Z.; Elliott, J.R.; Feng, W.; Jackson, J.A.; Parsons, B.E.; Walters, R.J. The 2010 Mw 6.8 Yushu (Qinghai, China) earthquake: Constraints provided by InSAR and body wave seismology. J. Geophys. Res. 2011, 116, B10302. [Google Scholar] [CrossRef]
- Elliott, J.R.; Walters, R.J.; Wright, T.J. The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat. Commun. 2016, 7, 13844. [Google Scholar] [CrossRef]
- Feng, W.; Li, Z.; Elliott, J.R.; Fukushima, Y.; Hoey, T.; Singleton, A.; Cook, R.; Xu, Z. The 2011 Mw 6.8 Burma earthquake: Fault constraints provided by multiple SAR techniques. Geophys. J. Int. 2013, 195, 650–660. [Google Scholar] [CrossRef]
- Li, Z.; Han, B.; Liu, Z.; Zhang, M.; Yu, C.; Chen, B.; Liu, H.; Du, J.; Zhang, S.; Zhu, W.; et al. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 887–897. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, C.; Wen, Y.; Li, Z. InSAR Inversion and Boundary Element Analysis of the Zadoi Mw 5.9 Earthquake Fault Slip. J. Wuhan Univ. 2020, 45, 1678–1686. [Google Scholar] [CrossRef]
- Liu, Z.; Han, B.; Liu, H.; Li, Z.; Nai, Y.; Chen, B.; Peng, J. Seismogenic Fault and Building Damage of the 2023 Herat Earthquake Sequence Revealed by Radar Interferometry. Geomat. Inf. Sci. Wuhan Univ. 2024, 49, 722–733. [Google Scholar] [CrossRef]
- Han, B.; Liu, Z.; Chen, B.; Li, Z.; Yu, C.; Zhang, Y.; Peng, J. Coseismic Deformation and Slip Distribution of the 2022 Luding Mw 6.6 Earthquake Revealed by InSAR Observations. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 36–46. [Google Scholar] [CrossRef]
- Dai, X.; Liu, X.; Liu, R.; Song, M.; Zhu, G.; Chang, X.; Guo, J. Coseismic slip distribution and Coulomb stress change of the 2023 Mw 7.8 Pazarcik and Mw 7.5 Elbistan earthquakes in Turkey. Remote Sens. 2024, 16, 240. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. Planet. Phys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Weiss, J.R.; Walters, R.J.; Morishita, Y.; Wright, T.J.; Lazecky, M.; Wang, H.; Hussain, E.; Hooper, A.J.; Elliott, J.R.; Rollins, C.; et al. High-Resolution Surface Velocities and Strain for Anatolia From Sentinel-1 InSAR and GNSS Data. Geophys. Res. Lett. 2020, 47, e2020GL087376. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Yu, C.; Penna, N.T.; Li, Z. Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res. 2017, 122, 2008–2025. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Liu, Z. Reduction of Atmospheric Effects on InSAR Observations Through Incorporation of GACOS and PCA Into Small Baseline Subset InSAR. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5209115. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms. J. Opt. Soc. Am. A 2000, 17, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Yu, C.; Li, Z.; Utili, S.; Frattini, P.; Crosta, G.; Peng, J. Triggering and recovery of earthquake accelerated landslides in Central Italy revealed by satellite radar observations. Nat. Commun. 2022, 13, 7278. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Sun, J.; Ji, L. The 2024 Mw 7.1 Wushi Earthquake: A Thrust and Strike-Slip Event Unveiling the Seismic Mechanisms of the South Tian Shan’s Thick-Skin Tectonics. Remote Sens. 2024, 16, 2937. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Bagnardi, M.; Hooper, A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach. Geochem. Geophys. Geosyst. 2018, 19, 2194–2211. [Google Scholar] [CrossRef]
- Lohman, R.B.; Simons, M. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling. Geochem. Geophys. Geosyst. 2005, 6, Q01007. [Google Scholar] [CrossRef]
- Parsons, B.; Wright, T.; Rowe, P.; Andrews, J.; Jackson, J.; Walker, R.; Khatib, M.; Talebian, M.; Bergman, E.; Engdahl, E.R. The 1994 Sefidabeh (eastern Iran) earthquakes revisited: New evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault. Geophys. J. Int. 2006, 164, 202–217. [Google Scholar] [CrossRef]
- Gavin, H.P. The Levenberg-Marquardt Algorithm for Nonlinear Least Squares Curve-Fitting Problems. Available online: https://people.duke.edu/~hpgavin/m-files/lm.pdf (accessed on 25 March 2024).
- Wen, Y.; Xu, C.; Liu, Y.; Jiang, G. Deformation and Source Parameters of the 2015 Mw 6.5 Earthquake in Pishan, Western China, from Sentinel-1A and ALOS-2 Data. Remote Sens. 2016, 8, 134. [Google Scholar] [CrossRef]
- Neng, L.H.; Han, S.Q.; Liu, Z.J.; Li, J.J.; Song, Y.M.; Yu, R.R.; Li, Z.J.; Hou, J.B. InSAR monitoring reveals the 2024 Mw 7.0 earthquake-induced geomorphological deformation and fault model in Xinjiang. J. Wuhan Univ. 2024. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhang, Y.L.; Xu, Q.J.; Xu, S.X. InSAR co-seismic deformation detection and fault slip distribution inversion of the 2024 Ms 7.1 earthquake in Xinjiang. J. Chengdu Univ. Technol. 2024, 51, 632–653. [Google Scholar] [CrossRef]
- Zhao, L.H.; Chen, Z.D.; Xie, L.; Zhu, Z.H.; Xu, W.B. Co-seismic deformation and slip model of the 2024 Mw 7.0 Wushi earthquake obtained from InSAR observation. Rev. Geophys. Planet. Phys. 2024, 55, 453–460. [Google Scholar]
- Guo, N.; Wu, Y.; Zhu, S.; Chen, C. Coseismic deformation and interseismic strain accumulation of the 2024 MS 7.1 Wushi earthquake in Xinjiang, China. Adv. Space Res. 2024, 74, 1586–1594. [Google Scholar] [CrossRef]
- Yu, S.; Li, Z.; Zhao, P.; Luo, J.; Yang, Y. Source Parameters and Seismogenic Fault Model of the 2024 Mw 7.0 Wushi (Xinjiang, China) Earthquake Revealed by InSAR Observations. Pure Appl. Geophys. 2024, 1–14. [Google Scholar] [CrossRef]
- Wang, R.; Parolai, S.; Ge, M.; Jin, M.; Walter, T.R.; Zschau, J. The 2011 Mw 9.0 Tohoku Earthquake: Comparison of GPS and Strong-Motion Data. Bull. Seismol. Soc. Am. 2013, 103, 1336–1347. [Google Scholar] [CrossRef]
- Liu, G.; Xiong, W.; Wang, Q.; Qiao, X.; Ding, K.; Li, X.; Yang, S.M. Source characteristics of the 2017 Ms 7.0 Jiuzhaigou, China, earthquake and implications for recent seismicity in eastern Tibet. J. Geophys. Res. 2019, 124, 4895–4915. [Google Scholar] [CrossRef]
- Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. Update on CRUST1.0—A 1-degree Global Model of Earth’s Crust. In Proceedings of the EGU General Assembly 2013, Vienna, Austria, 7–12 April 2013; pp. EGU2013–EGU2658. [Google Scholar]
- Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. CRUST 1.0: An Updated Global Model of Earth’s Crust. Available online: https://igppweb.ucsd.edu/~gabi/crust1.html (accessed on 30 May 2024).
- Du, Y.; Segall, P.; Gao, H. Dislocations in inhomogeneous media via a moduli perturbation approach: General formulation and two-dimensional solutions. J. Geophys. Res. 1994, 99, 13767–13779. [Google Scholar] [CrossRef]
- Savage, J.C. Displacement field for an edge dislocation in a layered half-space. J. Geophys. Res. 1998, 103, 2439–2446. [Google Scholar] [CrossRef]
- Cattin, R.; Briole, P.; Lyon-Caen, H.; Bernard, P.; Pinettes, P. Effects of superficial layers on coseismic displacements for a dip-slip fault and geophysical implications. Geophys. J. Int. 1999, 137, 149–158. [Google Scholar] [CrossRef]
- Toda, S.; Stein, R.S.; Sevilgen, V.; Lin, J. Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—User guide. Geol. Surv. Open-File Rep. 2011, 1060, 63. [Google Scholar]
- Freed, A.M. Earthquake Triggering by Static, Dynamic, and Postseismic Stress Transfer. Annu. Rev. Earth Planet. Sci. 2005, 33, 335–367. [Google Scholar] [CrossRef]
Orbit | Track | Master | Slave | Imaging Mode | Polarization Mode | Maximum Surface Displacement (cm) | Angle of Incidence (rad) | Azimuth (rad) |
---|---|---|---|---|---|---|---|---|
Ascend | T056 | 2024-01-14 | 2024-01-26 | IW | VV | 81.1 | 39.75 | 76.35 |
Descend | T136 | 2024-01-20 | 2024-02-25 | IW | VV | 65.7 | 40.97 | 283.61 |
T034 | 2024-01-13 | 2024-01-25 | IW | VV | 50.3 | 39.75 | 283.65 |
Layer | Depth (km) | Vp (km·s−1) | Vs (km·s−1) | Density (kg·m−3) |
---|---|---|---|---|
1 | 0.00 | 6.10 | 3.55 | 2740 |
2 | 19.73 | 6.30 | 3.65 | 2780 |
3 | 40.32 | 7.00 | 3.99 | 2950 |
4 | 49.30 | 8.08 | 4.49 | 3330 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Liu, X.; Dai, X.; Yin, G.; Yang, Y.; Guo, J. D-InSAR-Based Analysis of Slip Distribution and Coulomb Stress Implications from the 2024 Mw 7.01 Wushi Earthquake. Remote Sens. 2024, 16, 4319. https://doi.org/10.3390/rs16224319
Ding Y, Liu X, Dai X, Yin G, Yang Y, Guo J. D-InSAR-Based Analysis of Slip Distribution and Coulomb Stress Implications from the 2024 Mw 7.01 Wushi Earthquake. Remote Sensing. 2024; 16(22):4319. https://doi.org/10.3390/rs16224319
Chicago/Turabian StyleDing, Yurong, Xin Liu, Xiaofeng Dai, Gaoying Yin, Yang Yang, and Jinyun Guo. 2024. "D-InSAR-Based Analysis of Slip Distribution and Coulomb Stress Implications from the 2024 Mw 7.01 Wushi Earthquake" Remote Sensing 16, no. 22: 4319. https://doi.org/10.3390/rs16224319
APA StyleDing, Y., Liu, X., Dai, X., Yin, G., Yang, Y., & Guo, J. (2024). D-InSAR-Based Analysis of Slip Distribution and Coulomb Stress Implications from the 2024 Mw 7.01 Wushi Earthquake. Remote Sensing, 16(22), 4319. https://doi.org/10.3390/rs16224319