Comparison and Analysis of CALIPSO Aerosol Optical Depth and AERONET Aerosol Optical Depth Products in Asia from 2006 to 2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. CALIPSO AOD
2.2.2. AERONET AOD
2.3. Methods
- (1)
- Pearson correlation coefficient (R)
- (2)
- Relative Mean Deviation (RMB)
- (3)
- Mean Absolute Error (MAE)
- (4)
- Root Mean Square Error (RMSE)
- (5)
- Total Accuracy Rating
3. Results
3.1. Overall Analysis of the Comparison Between CALIPSO AOD and AERONET AOD
3.2. Determination of Accuracy Class for Different Sites
3.3. Comparative Analysis of CALIPSO and AERONET AOD Across Different Seasons
3.4. Comparison of CALIPSO and AERONET AOD at Different Elevations
4. Discussion
5. Conclusions
- (1)
- Overall, CALIPSO retrievals show a high degree of consistency with AERONET observation. They have a strong correlation evidenced by an R value of 0.636. At eleven sites, CALIPSO AOD accuracy was performed as “Excellent” and at four sites as “Very good”. Additionally, at seven sites CALIPSO AOD accuracy was performed as “Good”, while at three sites as “Poor”. Different climate conditions influence the accuracy of various sites.
- (2)
- The accuracy of CALIPSO AOD is influenced by seasonal variations. CALIPSO AOD indicated a stronger correlation with AERONET AOD in DJF and SON, with higher accuracy. In JJA, forest fires and varying surface vegetation lead to uncertainty of CALIPSO AOD inversion. The CALIPSO AOD accuracy is lowest in JJA.
- (3)
- The accuracy of sites varies at different elevations. CALIPSO and AERONET AOD show the strongest consistency at sites below 50 m. However, in the sites within the altitude range of 200 to 500 m, RMB is 1.283, indicating a large deviation between the two AOD products.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prather, K.A.; Hatch, C.D.; Grassian, V.H. Analysis of Atmospheric Aerosols. Annu. Rev. Anal. Chem. 2008, 1, 485–514. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Liu, Y.; Zhu, Q.; Tang, Y.; Shao, T. Effects of aerosols on cloud and precipitation in East-Asian drylands. Int. J. Climatol. 2021, 41, 4603–4618. [Google Scholar] [CrossRef]
- Hostetler, C.A.; Lee, K.-P.; Ferrare, R.A.; Trepte, C.R.; Hu, Y.; Vaughan, M.A.; Winker, D.M.; Omar, A.H.; Kittaka, C.; Rogers, R.R.; et al. The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 9791–9806. [Google Scholar] [CrossRef]
- McMurry, P.H.J.A.E. A review of atmospheric aerosol measurements. Atmos. Environ. 2000, 34, 1959–1999. [Google Scholar] [CrossRef]
- Chen, X.; Ding, H.; Li, J.; Wang, L.; Li, L.; Xi, M.; Zhao, L.; Shi, Z.; Liu, Z. Remote sensing retrieval of aerosol types in China using geostationary satellite. Atmos. Res. 2024, 299, 107150. [Google Scholar] [CrossRef]
- Zhao, X.; Allen, R.J.; Thomson, E.S. An Implicit Air Quality Bias Due to the State of Pristine Aerosol. Earth’s Future 2021, 9, e2021EF001979. [Google Scholar] [CrossRef]
- Ouyang, R.; Yang, S.; Xu, L. Analysis and Risk Assessment of PM2.5-Bound PAHs in a Comparison of Indoor and Outdoor Environments in a Middle School: A Case Study in Beijing, China. Atmosphere 2020, 11, 904. [Google Scholar] [CrossRef]
- Cirino, G.G.; Souza, R.A.F.; Adams, D.K.; Artaxo, P. The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon. Atmos. Chem. Phys. 2014, 14, 6523–6543. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, X.; Kahn, R.; Mishchenko, M.; Remer, L.; Lee, K.-H.; Wang, M.; Laszlo, I.; Nakajima, T.; Maring, H. Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective. Proc. Ann. Geophys. 2009, 27, 2755–2770. [Google Scholar] [CrossRef]
- Kanniah, K.D.; Lim, H.Q.; Kaskaoutis, D.G.; Cracknell, A.P. Investigating aerosol properties in Peninsular Malaysia via the synergy of satellite remote sensing and ground-based measurements. Atmos. Res. 2014, 138, 223–239. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.a.; Tanré, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Holben, B.N.; Tanré, D.; Smirnov, A.; Eck, T.; Slutsker, I.; Abuhassan, N.; Newcomb, W.; Schafer, J.; Chatenet, B.; Lavenu, F.; et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. Atmos. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Ichoku, C.; Levy, R.; Kaufman, Y.J.; Remer, L.A.; Li, R.R.; Martins, V.J.; Holben, B.N.; Abuhassan, N.; Slutsker, I.; Eck, T.F.; et al. Analysis of the performance characteristics of the five-channel Microtops II Sun photometer for measuring aerosol optical thickness and precipitable water vapor. J. Geophys. Res. Atmos. 2002, 107, AAC 5-1–AAC 5-17. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Su, L.; Toon, O.B. Saharan and Asian dust: Similarities and differences determined by CALIPSO, AERONET, and a coupled climate-aerosol microphysical model. Atmos. Chem. Phys. 2011, 11, 3263–3280. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.J.J.o.G.; Analysis, S. Validation of MODIS aerosol products with AERONET measurements of different land cover types in areas over Eastern Europe and China. J. Geovisualization Spat. Anal. 2020, 4, 10. [Google Scholar] [CrossRef]
- Mielonen, T.; Arola, A.; Komppula, M.; Kukkonen, J.; Koskinen, J.; de Leeuw, G.; Lehtinen, K.E.J. Comparison of CALIOP level 2 aerosol subtypes to aerosol types derived from AERONET inversion data. Geophys. Res. Lett. 2009, 36, L18804. [Google Scholar] [CrossRef]
- Bibi, H.; Alam, K.; Chishtie, F.; Bibi, S.; Shahid, I.; Blaschke, T. Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data. Atmos. Environ. 2015, 111, 113–126. [Google Scholar] [CrossRef]
- Aldabash, M.; Bektas Balcik, F.; Glantz, P.J.A. Validation of MODIS C6. 1 and MERRA-2 AOD using AERONET observations: A comparative study over Turkey. Atmosphere 2020, 11, 905. [Google Scholar] [CrossRef]
- Powell, K.A.; Hostetler, C.A.; Liu, Z.; Vaughan, M.A.; Kuehn, R.E.; Hunt, W.H.; Lee, K.; Trepte, C.R.; Rogers, R.R.; Young, S.A. CALIPSO Lidar Calibration Algorithms. Part I: Nighttime 532-nm Parallel Channel and 532nm Perpendicular Channel. J. Atmos. Ocean. Tech. 2015, 26, 2033. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; McCormick, M.P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Proc. SPIE 2003, 4893, 4893. [Google Scholar]
- Winker, D.M.; Pelon, J.; McCormick, M.P. Initial Results from CALIPSO. In Proceedings of the 23rd International Laser Radar Conference (ILRC23), Nara, Japan, 24–28 July 2006; pp. 991–994. [Google Scholar]
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34, L19803. [Google Scholar] [CrossRef]
- Omar, A.H.; Winker, D.M.; Tackett, J.L.; Giles, D.M.; Kar, J.; Liu, Z.; Vaughan, M.A.; Powell, K.A.; Trepte, C.R. CALIOP and AERONET aerosol optical depth comparisons: One size fits none. J. Geophys. Res. Atmos. 2013, 118, 4748–4766. [Google Scholar] [CrossRef]
- Ogunjobi, K.O.; Awoleye, P.O. Intercomparison and Validation of Satellite and Ground-Based Aerosol Optical Depth (AOD) Retrievals over Six AERONET Sites in West Africa. Aerosol Sci. Eng. 2019, 3, 32–47. [Google Scholar] [CrossRef]
- Nelli, N.; Fissehaye, S.; Francis, D.; Fonseca, R.; Temimi, M.; Weston, M.; Abida, R.; Nesterov, O. Characteristics of Atmospheric Aerosols Over the UAE Inferred From CALIPSO and Sun Photometer Aerosol Optical Depth. Earth Space Sci. 2021, 8, e2020EA001360. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Chen, H.; Tsay, S.C.; Holben, B.; Huang, J.; Li, B.; Maring, H.; Qian, Y.; Shi, G.; et al. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An overview. J. Geophys. Res. 2011, 116, D7. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, X. Spatiotemporal change in geographical distribution of global climate types in the context of climate warming. Clim. Dyn. 2013, 43, 595–605. [Google Scholar] [CrossRef]
- Anderson, D.E.; Cahalan, R.F. The solar radiation and climate experiment (SORCE) mission for the NASA earth observing system (eos). Sol. Phys. 2005, 230, 3–6. [Google Scholar] [CrossRef]
- Rogers, R.R.; Hostetler, C.A.; Hair, J.W.; Ferrare, R.A.; Liu, Z.; Obland, M.D.; Harper, D.B.; Cook, A.L.; Powell, K.A.; Vaughan, M.A.; et al. Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar. Atmos. Chem. Phys. 2011, 11, 1295–1311. [Google Scholar] [CrossRef]
- Powell, K.A.; Hu, Y.; Omar, A.; Vaughan, M.A.; Winker, D.M.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Liu, Z.; Omar, A.; Vaughan, M.; Hair, J.; Kittaka, C.; Hu, Y.; Powell, K.; Trepte, C.; Winker, D.; Hostetler, C.; et al. CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport. J. Geophys. Res. Atmos. 2008, 113, D7. [Google Scholar] [CrossRef]
- Liu, B.; Ma, Y.; Gong, W.; Zhang, M.; Wang, W.; Shi, Y. Comparison of AOD from CALIPSO, MODIS, and Sun Photometer under Different Conditions over Central China. Sci. Rep. 2018, 8, 10066. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Che, H.-Z.; Tan, S.-C.; Shi, G.-Y.; Yao, X.-P. The impact of aerosol on MODIS cloud detection and property retrieval in seriously polluted East China. Sci. Total Environ. 2020, 711, 134634. [Google Scholar] [CrossRef]
- Kim, M.-H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, H.; Zhang, L. Assessment of Himawari-8 AHI Aerosol Optical Depth Over Land. Remote Sens. 2019, 11, 1108. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Che, H.; Dong, Y.; Dubovik, O.; Eck, T.; Gupta, P.; Holben, B.; Kim, J.; Lind, E.; et al. Long-term trends in aerosol properties derived from AERONET measurements. EGUsphere 2024, 2024, 1–28. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, H.; Li, Z.; Xie, Y.; Li, D. Maritime Aerosol Optical and Microphysical Properties in the South China Sea Under Multi-source Influence. Sci. Rep. 2019, 9, 17796. [Google Scholar] [CrossRef]
- Wang, P.; Tang, Q.; Zhu, Y.; Zheng, K.; Liang, T.; Yu, Q.; He, Y. Validation and Analysis of MAIAC AOD Aerosol Products in East Asia from 2011 to 2020. Remote Sens. 2022, 14, 5735. [Google Scholar] [CrossRef]
- Schuster, G.L.; Dubovik, O.; Holben, B.N. Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Li, M.-F.; Tang, X.-P.; Wu, W.; Liu, H.-B. General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Convers. Manag. 2013, 70, 139–148. [Google Scholar] [CrossRef]
- Mhawish, A.; Sorek-Hamer, M.; Chatfield, R.; Banerjee, T.; Bilal, M.; Kumar, M.; Sarangi, C.; Franklin, M.; Chau, K.; Garay, M.; et al. Aerosol characteristics from earth observation systems: A comprehensive investigation over South Asia (2000–2019). Remote Sens. Environ. 2021, 259, 112410. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, M.; Bilal, M.; Su, B.; Zhang, C.; Guo, L. Comparison of MODIS- and CALIPSO-Derived Temporal Aerosol Optical Depth over Yellow River Basin (China) from 2007 to 2015. Earth Syst. Environ. 2020, 4, 535–550. [Google Scholar] [CrossRef]
- Schuster, G.L.; Vaughan, M.; MacDonnell, D.; Su, W.; Winker, D.; Dubovik, O.; Lapyonok, T.; Trepte, C. Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust. Atmos. Chem. Phys. 2012, 12, 7431–7452. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Lv, M.; Wang, Y.; Wang, W.; Zhang, Y.; Wang, H.; Yan, X.; Sun, Y.; Cribb, M. Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern China. Atmos. Chem. Phys. 2019, 19, 1327–1342. [Google Scholar] [CrossRef]
- Tao, J.C.; Zhao, C.S.; Ma, N.; Liu, P.F. The impact of aerosol hygroscopic growth on the single-scattering albedo and its application on the NO2 photolysis rate coefficient. Atmos. Chem. Phys. 2014, 14, 12055–12067. [Google Scholar] [CrossRef]
- Galytska, E.; Danylevsky, V.; Hommel, R.; Burrows, J.P. Increased aerosol content in the atmosphere over Ukraine during summer 2010. Atmos. Meas. Tech. 2018, 11, 2101–2118. [Google Scholar] [CrossRef]
- Ye, X.; Deshler, M.; Lyapustin, A.; Wang, Y.; Kondragunta, S.; Saide, P. Assessment of Satellite AOD during the 2020 Wildfire Season in the Western US. Remote Sens. 2022, 14, 6113. [Google Scholar] [CrossRef]
- Martonchik, J.V.; Diner, D.J.; Kahn, R.A.; Ackerman, T.P.; Verstraete, M.M.; Pinty, B.; Gordon, H.R. Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1212–1227. [Google Scholar] [CrossRef]
- Gao, T.; Shen, R.P.; Li, L.; Wang, Y.Q.; Huang, A.Q. Spatial and Temporal Variations of Land Surface Albedo and Its Influencing Factors Based on MODIS Data. Clim. Environ. Res. 2021, 26, 648–662. (In Chinese) [Google Scholar] [CrossRef]
Climate Zone | Subcategory | Subdivision | Characteristic |
---|---|---|---|
A (Tropical) | Tcold ≥ 18 | ||
f (Rainforest) | Tropical rainforest climate: Pdry ≥ 60 mm | ||
m (Monsoon) | Tropical monsoon climate: Pdry ≤ 60 mm and Pdry ≤ (100-MAP/25) mm | ||
W (Savanna, dry winter, and dry summer) | Tropical open forest climate: Pdry ≤ 60 mm and Pdry ≥ (100-MAP/25) mm | ||
B (Dry) | MAP < 10 Pth | ||
W (Arid Desert) | h (Hot) | Desert climate: MAP < 5 Pth | |
S (Semi-Arid Steppe) | k (Cold) | Steppe climate: MAP ≥ 5 Pth | |
C (Temperate) | Thot > 10 °C and 0 °C < Tcold < 18 °C | ||
w (Dry winter) | a (Hot summer) | The dry and warm climate in winter: Pwdry < Pswet/10 | |
f (No dry season) | B (Warm summer) | Dry summer and warm climate: Neither Cw nor Cf | |
s (Dry summer) | c (Cold summer) | Dry summer and warm climate: Pwdry < Pswet/10 | |
D (Continental) | Thot > 10 °C and Tcold ≤ 0 °C | ||
w (Dry winter) | a (Hot summer) | Sub-frigid monsoon climate: Pwdry < Pswet/10 | |
f (No dry season) | b (Warm summer) | Normally humid and cold temperature climate: Neither Ds nor Dw | |
s (Dry summer) | c (Cold summer) | Subarctic continental climate: Psdry < 40 mm and Psdary < Pwwet/3 | |
d (Very cold winter) | |||
E (Polar) | Thot < 10 °C | ||
T (Tundra) | Ice climate: Thot > 0 °C | ||
F (Ice Cap) | Tundra climate: Thot ≤ 0 °C |
Sites | Country | Lon. (°E) | Lat. (°N) | Period of Time | Elevation (m) |
---|---|---|---|---|---|
Bac_Lieu | Vietnam | 105.73 | 9.28 | 2007–2008, 2013–2019 | <50 |
Dhabi | United Arab Emirates | 54.382 | 24.48 | 2006–2008 | |
IMS-METU-ERDEMLI | Turkey | 34.255 | 36.565 | 2006–2019 | |
Kuwait_University | Kuwait | 47.971 | 29.325 | 2009–2010, 2019–2021 | |
Masdar_Institute | United Arab Emirates | 54.617 | 24.441 | 2018, 2020–2021 | |
Nes_Ziona | Israel | 34.789 | 31.922 | 2010–2015 | |
Eilat | Israel | 34.918 | 29.502 | 2007–2022 | |
Karachi | Pakistan | 67.136 | 24.946 | 2008–2023 | |
Xianghe | China | 116.962 | 39.754 | 2007–2021 | |
Beijing | China | 116.381 | 39.977 | 2006–2019 | 50–200 |
Manila_Observatory | Philippines | 121.077 | 14.635 | 2018–2021 | |
Weizmann_Institute | Israel | 34.81 | 31.907 | 2015–2021 | |
Silpakorn_Univ | Thailand | 100.041 | 13.819 | 2007–2020 | |
Gandhi_College | India | 84.128 | 25.817 | 2006–2009, 2011–2021 | |
Yonsei_University | South Korea | 126.934 | 37.564 | 2011–2022 | |
Seoul_SNU | South Korea | 126.951 | 37.458 | 2012–2022 | |
Yakutsk | Russia | 129.367 | 61.661 | 2008–2021 | |
EPA-NCU | China | 121.185 | 24.968 | 2006, 2008–2009, 2011–2012, | |
2014–2022 | |||||
Kanpur | India | 80.231 | 26.512 | 2006–2021 | |
Mukdahan | Thailand | 104.676 | 16.607 | 2006–2009 | |
Mezaira | United Arab Emirates | 53.754 | 23.105 | 2007–2019 | 200–500 |
Chiang_Mai_Met_Sta | Thailand | 98.972 | 18.771 | 2008–2018 | |
Jaipur | India | 75.806 | 26.906 | 2009–2021 | |
Yekaterinburg | Russia | 59.545 | 57.038 | 2006–2007, 2011, 2013, 2018, 2021 | |
Pokhara | Nepal | 83.975 | 28.187 | 2018–2019, 2021–2022 | >500 |
SACOL | China | 104.137 | 35.946 | 2007–2013 |
R | RMB | MAE | RMSE | Reevaluation |
---|---|---|---|---|
0.50–0.55 | >1.55/<0.9 | >0.29 | >0.4 | 1 |
0.55–0.65 | 0.9–0.95/1.05–1.55 | 0.24–0.29 | 0.35–0.40 | 2 |
0.65–0.75 | 1–1.05/0.95–0.99 | 0.18–0.24 | 0.30–0.35 | 3 |
>0.75 | 0.99–1 | <0.18 | <0.3 | 4 |
Total reclassification | Accuracy | |||
≥12 | Excellent | |||
10–11 | Very good | |||
7–9 | Good | |||
≤6 | Poor |
Sites | R | RMB | MAE | RMSE | Accuracy |
---|---|---|---|---|---|
Bac_Lieu | 0.867 | 1.149 | 0.087 | 0.117 | Excellent |
Dhabi | 0.690 | 1.338 | 0.271 | 0.429 | Good |
IMS-METU-ERDEMLI | 0.607 | 0.713 | 0.135 | 0.172 | Very good |
Kuwait_University | 0.618 | 1.138 | 0.252 | 0.434 | Good |
Masdar_Institute | 0.755 | 1.265 | 0.172 | 0.354 | Excellent |
Nes_Ziona | 0.839 | 0.917 | 0.113 | 0.195 | Excellent |
Eilat | 0.852 | 0.858 | 0.072 | 0.100 | Excellent |
Karachi | 0.770 | 1.216 | 0.197 | 0.285 | Excellent |
Xianghe | 0.724 | 0.777 | 0.262 | 0.482 | Good |
Beijing | 0.617 | 0.663 | 0.353 | 0.575 | Poor |
Manila_Observatory | 0.641 | 2.282 | 0.222 | 0.312 | Good |
Weizmann_Institute | 0.528 | 0.981 | 0.101 | 0.179 | Excellent |
Silpakorn_Univ | 0.527 | 1.195 | 0.266 | 0.363 | Good |
Gandhi_College | 0.509 | 1.256 | 0.345 | 0.481 | Poor |
Yonsei_University | 0.646 | 0.775 | 0.196 | 0.324 | Good |
Seoul_SNU | 0.653 | 0.833 | 0.189 | 0.301 | Very good |
Yakutsk | 0.733 | 1.056 | 0.147 | 0.229 | Excellent |
EPA-NCU | 0.586 | 0.590 | 0.255 | 0.402 | Poor |
Kanpur | 0.770 | 1.216 | 0.197 | 0.285 | Excellent |
Mukdahan | 0.772 | 1.365 | 0.196 | 0.320 | Excellent |
Mezaira | 0.854 | 1.538 | 0.210 | 0.364 | Very good |
Chiang_Mai_Met_Sta | 0.703 | 0.989 | 0.187 | 0.296 | Excellent |
Jaipur | 0.568 | 1.463 | 0.274 | 0.433 | Good |
Yekaterinburg | 0.509 | 0.725 | 0.101 | 0.117 | Very good |
Pokhara | 0.888 | 0.651 | 0.144 | 0.182 | Excellent |
SACOL | 0.600 | 0.936 | 0.159 | 0.256 | Excellent |
Name of Station | N | Frequency | |||
---|---|---|---|---|---|
MAM | JJA | SON | DJF | ||
Bac_Lieu | 27 | 0.630 | 0.148 | 0.074 | 0.148 |
Dhabi | 13 | 0.077 | 0.462 | 0.385 | 0.077 |
IMS-METU-ERDEMLI | 101 | 0.208 | 0.337 | 0.218 | 0.238 |
Kuwait_University | 18 | 0.444 | 0.167 | 0.222 | 0.167 |
Masdar_Institute | 10 | 0.200 | 0.300 | 0.100 | 0.400 |
Nes_Ziona | 49 | 0.224 | 0.265 | 0.265 | 0.245 |
Eilat | 89 | 0.270 | 0.281 | 0.258 | 0.191 |
Karachi | 103 | 0.340 | 0.146 | 0.214 | 0.301 |
Xianghe | 108 | 0.278 | 0.176 | 0.259 | 0.287 |
Beijing | 102 | 0.275 | 0.176 | 0.225 | 0.324 |
Manila_Observatory | 14 | 0.643 | 0.071 | 0.071 | 0.214 |
Weizmann_Institute | 51 | 0.196 | 0.275 | 0.353 | 0.176 |
Silpakorn_Univ | 93 | 0.323 | 0.054 | 0.183 | 0.441 |
Gandhi_College | 68 | 0.397 | 0.162 | 0.191 | 0.250 |
Yonsei_University | 77 | 0.325 | 0.208 | 0.234 | 0.234 |
Seoul_SNU | 53 | 0.321 | 0.226 | 0.208 | 0.245 |
Yakutsk | 31 | 0.290 | 0.419 | 0.258 | 0.032 |
EPA-NCU | 44 | 0.341 | 0.250 | 0.227 | 0.182 |
Kanpur | 103 | 0.340 | 0.146 | 0.214 | 0.301 |
Mukdahan | 19 | 0.474 | 0.105 | 0.211 | 0.211 |
Mezaira | 101 | 0.168 | 0.168 | 0.337 | 0.327 |
Chiang_Mai_Met_Sta | 105 | 0.314 | 0.057 | 0.257 | 0.371 |
Jaipur | 82 | 0.341 | 0.183 | 0.195 | 0.280 |
Yekaterinburg | 9 | 0.222 | 0.667 | 0.111 | 0.000 |
Pokhara | 14 | 0.429 | 0.000 | 0.214 | 0.357 |
SACOL | 68 | 0.294 | 0.250 | 0.250 | 0.206 |
Sites | Elevation (m) | DEMMEAN (m) | DEMMAX (m) | DEMMIN (m) |
---|---|---|---|---|
Bac_Lieu | 10.0 | 1.246 | 23 | −13 |
Dhabi | 15.0 | 47.235 | 151 | −24 |
IMS-METU-ERDEMLI | 3.0 | 559.675 | 2518 | 0 |
Kuwait_University | 42.0 | 50.499 | 219 | −12 |
Masdar_Institute | 4.0 | 32.533 | 166 | −24 |
Nes_Ziona | 40.0 | 193.518 | 1011 | 0 |
Eilat | 15.0 | 657.144 | 1733 | 0 |
Karachi | 49.0 | 81.924 | 687 | −12 |
Xianghe | 36.0 | 39.140 | 937 | −1 |
Beijing | 92.0 | 164.172 | 1351 | 6 |
Manila_Observatory | 63.0 | 163.430 | 1517 | −26 |
Weizmann_Institute | 73.0 | 207.845 | 1011 | 0 |
Silpakorn_Univ | 72.0 | 18.413 | 498 | −4 |
Gandhi_College | 60.0 | 66.041 | 40 | 94 |
Yonsei_University | 97.0 | 104.270 | 1126 | −8 |
Seoul_SNU | 116.0 | 95.846 | 1126 | −1 |
Yakutsk | 118.5 | 188.268 | 325 | 59 |
EPA-NCU | 144.0 | 310.689 | 3271 | −15 |
Kanpur | 123.0 | 127.288 | 152 | 87 |
Mukdahan | 166.0 | 196.021 | 620 | 120 |
Mezaira | 201.0 | 127.542 | 253 | 61 |
Chiang_Mai_Met_Sta | 312.0 | 673.659 | 2566 | 227 |
Jaipur | 450.0 | 386.087 | 788 | 258 |
Yekaterinburg | 300.0 | 373.562 | 717 | 209 |
Pokhara | 800.0 | 1496.801 | 7726 | 111 |
SACOL | 1965.8 | 2056.306 | 3635 | 1421 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Tang, Q.; Hu, Z.; Yu, Q.; Liang, T. Comparison and Analysis of CALIPSO Aerosol Optical Depth and AERONET Aerosol Optical Depth Products in Asia from 2006 to 2023. Remote Sens. 2024, 16, 4359. https://doi.org/10.3390/rs16234359
Zhao Y, Tang Q, Hu Z, Yu Q, Liang T. Comparison and Analysis of CALIPSO Aerosol Optical Depth and AERONET Aerosol Optical Depth Products in Asia from 2006 to 2023. Remote Sensing. 2024; 16(23):4359. https://doi.org/10.3390/rs16234359
Chicago/Turabian StyleZhao, Yinan, Qingxin Tang, Zhenting Hu, Quanzhou Yu, and Tianquan Liang. 2024. "Comparison and Analysis of CALIPSO Aerosol Optical Depth and AERONET Aerosol Optical Depth Products in Asia from 2006 to 2023" Remote Sensing 16, no. 23: 4359. https://doi.org/10.3390/rs16234359
APA StyleZhao, Y., Tang, Q., Hu, Z., Yu, Q., & Liang, T. (2024). Comparison and Analysis of CALIPSO Aerosol Optical Depth and AERONET Aerosol Optical Depth Products in Asia from 2006 to 2023. Remote Sensing, 16(23), 4359. https://doi.org/10.3390/rs16234359