Pest Detection in Citrus Orchards Using Sentinel-2: A Case Study on Mealybug (Delottococcus aberiae) in Eastern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sen2Like Processor and NBAR
2.3. Preprocessing
- Band 4 (red): (0, 0.15) m, as representative of the visible spectral range;
- Band 8A (NIR): (0.2, 0.5) m;
- Band 11 (SWIR): (0.1, 0.3) m;
- NDVI: (0.2, 1).
2.4. Main Process
3. Results
3.1. BRDF Correction and NBAR Time Series
3.2. Temporal Evolution
3.3. Temporal Tendency Analysis
3.4. Anomaly Analysis
4. Discussion
5. Conclusions
- Reflectivity has a strong dependence on SZA in all the studied bands, but especially in the NIR and SWIR channels. The HABA BRDF normalization is applied in order to reduce that relationship. Furthermore, the behavior of cyclical reflectivity is related to the crop cycle, resulting in a clear seasonal pattern; the BRDF normalization also helped mitigate that seasonality.
- The separability method based on monthly regressions is able to differentiate between healthy and affected plots, especially in the SWIR range, at different times of the year, given that positive slopes are related to affected fields and negative slopes to healthy ones from August onward. This is especially interesting because of the huge differentiation observed and its coincidence in time with the treatments application, which are used from July to September [47]. The slight separability detected in May in the NIR is also remarkable, since in April, May, and June, control samplings are carried out to see if there is the pest is present; being able to detect problematic plots in May from satellite could facilitate this arduous task.
- The evolution of the differences between the daily averages for healthy and affected plots shows negative tendencies in the SWIR, which could imply that the SWIR reflectivity average is increasing in the affected fields, which could be related to an increase in water stress.
- Thanks to the inspection of the anomalies, it is possible to compare each year with respect to the others; this shows an increase in the affected level from 2020 to 2022 in all spectral regions. The second part of the year is again the period with the best separability between healthy and affected plots.
- A preliminary criterion of separability can be established according to the anomalies, since it is seen that the affected parcels stand out due to negative anomalies in the red channel (beginning and end of the year) and the SWIR region (at the end of the year), as well as positive anomalies in the NDVI and in the NIR band (greater than 0.05).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quintana, A. Resolució de la Conselleria d’Agricultura, Desenvolupament Rural, Emergència Climàtica i Transició Ecològica. Diari Oficial de la Generalitat Valenciana. 2021. Available online: https://dogv.gva.es/datos/2021/08/17/pdf/2021_8695.pdf (accessed on 17 November 2024).
- Navarro, V.; Gavara, A.; Vacas, S. Dinámica poblacional y distribución de la plaga del cotonet de Sudáfrica Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) en la Comunidad Valenciana. Phytoma 2022, 340, 50–55. [Google Scholar]
- Ordre de la Conselleria d’Agricultura, Desenvolupament Rural, Emergència Climàtica i Transició Ecològica. Diari Oficial de la Generalitat Valenciana. 2022. Available online: https://dogv.gva.es/va/eli/es-vc/o/2022/06/16/8/dof/vci-spa/pdf (accessed on 17 November 2024).
- Tena, A. El control biológico de los cotonets en cítricos y caquis. L’Agrària 2023, 2. Available online: https://portalagrari.gva.es/documents/366567370/373857133/AF+L%27Agraria+02+Control+bio+cotonets+CAST+e-mail-20.pdf/50020d0e-235d-1098-11ae-adf3f5d4e28a?version=1.3&t=1692952545437 (accessed on 17 November 2024).
- Abdulridha, J.; Batuman, O.; Ampatzidis, Y. UAV-Based Remote Sensing Technique to Detect Citrus Canker Disease Utilizing Hyperspectral Imaging and Machine Learning. Remote Sens. 2019, 11, 1373. [Google Scholar] [CrossRef]
- Moriya, É.A.S.; Imai, N.N.; Tommaselli, A.M.G.; Berveglieri, A.; Santos, G.H.; Soares, M.A.; Marino, M.; Reis, T.T. Detection and mapping of trees infected with citrus gummosis using UAV hyperspectral data. Comput. Electron. Agric. 2021, 188, 106298. [Google Scholar] [CrossRef]
- Chang, A.; Yeom, J.; Jung, J.; Landivar, J. Comparison of Canopy Shape and Vegetation Indices of Citrus Trees Derived from UAV Multispectral Images for Characterization of Citrus Greening Disease. Remote Sens. 2020, 12, 4122. [Google Scholar] [CrossRef]
- Sankaran, S.; Maja, J.M.; Buchanon, S.; Ehsani, R. Huanglongbing (Citrus Greening) Detection Using Visible, Near Infrared and Thermal Imaging Techniques. Sensors 2013, 13, 2117–2130. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S). Quality Data to Support Agriculture. Available online: https://climate.copernicus.eu/quality-data-support-agriculture (accessed on 11 July 2023).
- European Space Agency. Sentinel-2 User Handbook; European Space Agency: Paris, France, 2015. [Google Scholar]
- Rubio, C.; Franch, B.; Valls, F.; Tarrazo-Serrano, D.; Castiñeira, S.; Uris, A.; Fita, D.; Arizo-García, P.; San Bautista, A. Application of remote sensing for monitoring the incidence of Delotococcus aberiae in citrus farms at Castellón (Spain). In Proceedings of the 136th Annual Meeting of the Florida State Horticultural Society 2023, Daytona Beach, FL, USA, 11–13 June 2023; p. 136. [Google Scholar]
- Yones, M.S.; Aboelghar, M.; Khdery, G.A.; Dahi, H.F.; Sowilem, M. Spectral Signature for Detecting Pest Infestation of Some Cultivated Plants in the Northern West Coast of Egypt. Egypt. Acad. J. Biol. Sci. A Entomol. 2019, 12, 73–83. [Google Scholar] [CrossRef]
- Saunier, S.; Louis, J.; Canonici, P.; Debaecker, V.; Moletto-Lobos, I.; Franch, B.; Cadau, E.; Griffiths, P.; Boccia, V.; Gascon, F. Sen2like: A solution for Harmonization and Fusion of Sentinel-2 and Landsat 8/9 data. In Proceedings of the Joint Agency Commercial Imagery Evaluation (JACIE) 2023, Reston, VA, USA, 27–30 March 2023. [Google Scholar] [CrossRef]
- Isip, M.F.; Alberto, R.T.; Biagtan, A.R. Exploring vegetation indices adequate in detecting twister disease of onion using Sentinel-2 imagery. Spat. Inf. Res. 2020, 28, 369–375. [Google Scholar] [CrossRef]
- Katsuhama, N.; Imai, M.; Naruse, N.; Takahashi, Y. Discrimination of areas infected with coffee leaf rust using a vegetation index. Remote Sens. Lett. 2018, 9, 1186–1194. [Google Scholar] [CrossRef]
- Vanella, D.; Consoli, S.; Ramírez Cuesta, J.; Tessitori, M. Suitability of the MODIS-NDVI Time-Series for an a Posteriori Evaluation of the Citrus Tristeza Virus Epidemic. Remote Sens. 2020, 12, 1965. [Google Scholar] [CrossRef]
- Georgiev, G.; Georgieva, M.; Belilov, S.; Mirchev, P.; Deliyanchev, S.; Mladenov, V.; Kropov, K.; Haydarova, S. Early detection of Ips typographus infestations by using Sentinel-2 satellite images in windthrow affected Norway spruce forests in Smolyan region, Bulgaria. Silva Balc. 2023, 23, 27–34. [Google Scholar] [CrossRef]
- He, A.; Xu, Z.; Li, B.; Li, Y.; Zhang, H.; Li, G.; Guo, X.; Li, Z. Revealing early pest source points and spreading laws of Pantana phyllostachysae Chao in Moso bamboo (Phyllostachys pubescens) forests from Sentinel-2A/B images. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103790. [Google Scholar] [CrossRef]
- Prabhakar, M.; Gopinath, K.A.; Kumar, N.R.; Thirupathi, M.; Sravan, U.S.; Kumar, G.S.; Siva, G.S.; Meghalakshmi, G.; Vennila, S. Detecting the invasive fall armyworm pest incidence in farm fields of southern India using Sentinel-2A satellite data. Geocarto Int. 2022, 37, 3801–3816. [Google Scholar] [CrossRef]
- Farshad Haghighian, S.Y.; Keesstra, S. Identifying tree health using sentinel-2 images: A case study on Tortrix viridana L. infected oak trees in Western Iran. Geocarto Int. 2022, 37, 304–314. [Google Scholar] [CrossRef]
- Dos Santos, A.; de Lima Santos, I.C.; da Silva, N.; Zanetti, R.; Oumar, Z.; Guimarães, L.F.R.; Camargo, M.B.D.; Zanuncio, J.C. Mapping defoliation by leaf-cutting ants Atta species in Eucalyptus plantations using the Sentinel-2 sensor. Int. J. Remote Sens. 2020, 41, 1542–1554. [Google Scholar] [CrossRef]
- Bhattarai, R.; Parinaz Rahimzadeh-Bajgiran, A.W.; MacLean, D.A. Sentinel-2 based prediction of spruce budworm defoliation using red-edge spectral vegetation indices. Remote Sens. Lett. 2020, 11, 777–786. [Google Scholar] [CrossRef]
- Yzquierdo-Alvarez, M.E.; Ortiz-García, C.F.; Rincón-Ramírez, J.A. Detection of huanglongbing of citruses (Citrus sp.) through Sentinel-2 satellite images in Huimanguillo, Tabasco, Mexico. Agro Product. 2021, IX. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, L.; Yu, G.; Liu, G. Impact of Huanglongbing on Citrus Orchards: A Spatiotemporal Study in Xunwu County, Jiangxi Province. Agriculture 2024, 1, 55. [Google Scholar] [CrossRef]
- Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T.; Harman, S.; Baruch, J.J. Geometrical Considerations and Nomenclature for Reflectance; US Department of Commerce, National Bureau of Standards: Washington, DC, USA, 1977.
- de Coca, F.C.; García-Haro, F.J.; Gilabert, M.A.; Meliá, J. La anisotropía de la BRDF: Una nueva signatura de las cubiertas vegetales. Rev. Teledetec. 2002, 18, 29–46. [Google Scholar]
- Wang, Q.; Ni-Meister, W. Forest Canopy Height and Gaps from Multiangular BRDF, Assessed with Airborne LiDAR Data. Remote Sens. 2019, 11, 2566. [Google Scholar] [CrossRef]
- Roujean, J.L.; Leroy, M.; Deschanps, P.Y. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. 1992, 972, 20455–20468. [Google Scholar] [CrossRef]
- Colgan, M.S.; Baldeck, C.A.; Féret, J.B.; Asner, G.P. Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data. Remote Sens. 2012, 4, 3462–3480. [Google Scholar] [CrossRef]
- Jia, W.; Pang, Y.; Tortini, R. The influence of BRDF effects and representativeness of training data on tree species classification using multi-flightline airborne hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 2024, 207, 245–263. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.; Skakun, S.; Roger, J.C.; Masek, J.; Ju, J.; Villaescusa-Nadal, J.L.; Santamaria-Artigas, A. A Method for Landsat and Sentinel 2 (HLS) BRDF Normalization. Remote Sens. 2019, 11, 632. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.; Claverie, M. Intercomparison of Landsat albedo retrieval techniques and evaluation against in situ measurements across the US SURFRAD network. Remote Sens. Environ. 2014, 152, 627–637. [Google Scholar] [CrossRef]
- Moletto-Lobos, I.; Franch, B.; Saunier, S.; Louis, J.; Cadau, E.; Debaecker, V.; Pflug, B.; Reyes, R.; Boccia, V.; Gascon, F. First Application of high resolution BRDF Algorithm (HABA) for Reflectance Normalization on a Fusion Dataset from the Sen2Like Processor. In Proceedings of the 6th International Symposium on Recent Advances in Quantitative Remote Sensing: RAQRS’VI, Torrent (Valencia), Spain, 9–23 September 2022. [Google Scholar]
- Saunier, S.; Pflug, B.; Lobos, I.M.; Franch, B.; Louis, J.; De Los Reyes, R.; Debaecker, V.; Cadau, E.G.; Boccia, V.; Gascon, F.; et al. Sen2Like: Paving the Way towards Harmonization and Fusion of Optical Data. Remote Sens. 2022, 14, 3855. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 11–14 September 2017. [Google Scholar] [CrossRef]
- Pignatale, F.C.; Müller-Wilm, U.; Louis, J.; Debaecker, V.; Pflug, B.; Kohlhepp, L.; Werner, B.; Quang, C.; Cadau, E.; Iannone, R.; et al. Sen2Cor Version 3.0 Processor Applied to Landsat-8 Data: Implementation and Preliminary Results. In Proceedings of the Living Planet Symposium, Bonn, Germany, 23–27 May 2022. [Google Scholar]
- Gao, F.; He, T.; Masek, J.G.; Shuai, Y.; Schaaf, C.B.; Wang, Z. Angular Effects and Correction for Medium Resolution Sensors to Support Crop Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4480–4489. [Google Scholar] [CrossRef]
- SIGPAC: Sistema de Información Geográfica de Parcelas Agrícolas. Available online: https://sigpac.mapa.gob.es/fega/visor/ (accessed on 17 November 2024).
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Roy, D. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Lucht, W.; Roujean, J.L. Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations. Remote Sens. Rev. 2000, 18, 343–379. [Google Scholar] [CrossRef]
- Somers, B.; Delalieux, S.; Verstraeten, W.; Eynde, A.; Barry, G.; Coppin, P. The Contribution of the Fruit Component to the Hyperspectral Citrus Canopy Signal. Photogramm. Eng. Remote Sens. 2010, 76, 37–47. [Google Scholar] [CrossRef]
- Nebauer, S.; Arenas, C.; Rodriguez-Gamir, J.; Bordon, Y.; Fortunato-Almeida, A.; Monerri, C.; Guardiola, J.; Molina, R. Crop load does not increase the photosynthetic rate in Citrus leaves under regular cropping conditions. A study throughout the year. Sci. Hortic. 2013, 160, 358–365. [Google Scholar] [CrossRef]
- Kureel, N.; Sarup, J.; Matin, S.; Goswami, S.; Kureel, K. Modelling vegetation health and stress using hypersepctral remote sensing data. Model. Earth Syst. Environ. 2022, 8, 733–748. [Google Scholar] [CrossRef]
- Bendel, N.; Kicherer, A.; Backhaus, A.; Köckerling, J.; Maixner, M.; Bleser, E.; Klück, H.C.; Seiffert, U.; Voegele, R.; Toepfer, R. Detection of Grapevine Leafroll-Associated Virus 1 and 3 in White and Red Grapevine Cultivars Using Hyperspectral Imaging. Remote Sens. 2020, 12, 1693. [Google Scholar] [CrossRef]
- Galvan, F.; Sousa, D.; Pavlick, R.; Aggarwal, S.; Trolley, G.; Forrestel, E.; Bolton, S.; Dokoozlian, N.; Alsina, M.; Gold, K. Scalable early detection of grapevine virus infection with airborne imaging spectroscopy. Phytopathology 2022. [Google Scholar] [CrossRef]
- Anderson, M.C.; Zolin, C.A.; Sentelhas, P.C.; Hain, C.R.; Semmens, K.; Yilmaz, M.T.; Gao, F.; Otkin, J.A.; Tetrault, R. The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts. Remote Sens. Environ. 2016, 174, 82–99. [Google Scholar] [CrossRef]
- Instituto Valenciano de Investigaciones Agrarias. Delottococcus Aberiae. Available online: http://gipcitricos.ivia.es/area/plagas-principales/pseudococcidos/delottococcus-aberiae (accessed on 17 November 2024).
Spectral Range | Periodicity | Trend Sign | Separability | |
---|---|---|---|---|
Minimum | Maximum | Difference | Months | |
Red | Winter | Summer | Negative | 8, 10, 11, 12 |
NIR | Winter | Summer | Positive | 1, 5, 11 |
SWIR | Winter | Summer | Negative | From 6 to 12 |
NDVI | Summer | Winter | Positive | 7, 8, 10, 11, 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Della Bellver, F.; Franch Gras, B.; Moletto-Lobos, I.; Guerrero Benavent, C.J.; San Bautista Primo, A.; Rubio, C.; Vermote, E.; Saunier, S. Pest Detection in Citrus Orchards Using Sentinel-2: A Case Study on Mealybug (Delottococcus aberiae) in Eastern Spain. Remote Sens. 2024, 16, 4362. https://doi.org/10.3390/rs16234362
Della Bellver F, Franch Gras B, Moletto-Lobos I, Guerrero Benavent CJ, San Bautista Primo A, Rubio C, Vermote E, Saunier S. Pest Detection in Citrus Orchards Using Sentinel-2: A Case Study on Mealybug (Delottococcus aberiae) in Eastern Spain. Remote Sensing. 2024; 16(23):4362. https://doi.org/10.3390/rs16234362
Chicago/Turabian StyleDella Bellver, Fàtima, Belen Franch Gras, Italo Moletto-Lobos, César José Guerrero Benavent, Alberto San Bautista Primo, Constanza Rubio, Eric Vermote, and Sebastien Saunier. 2024. "Pest Detection in Citrus Orchards Using Sentinel-2: A Case Study on Mealybug (Delottococcus aberiae) in Eastern Spain" Remote Sensing 16, no. 23: 4362. https://doi.org/10.3390/rs16234362
APA StyleDella Bellver, F., Franch Gras, B., Moletto-Lobos, I., Guerrero Benavent, C. J., San Bautista Primo, A., Rubio, C., Vermote, E., & Saunier, S. (2024). Pest Detection in Citrus Orchards Using Sentinel-2: A Case Study on Mealybug (Delottococcus aberiae) in Eastern Spain. Remote Sensing, 16(23), 4362. https://doi.org/10.3390/rs16234362