Determining the Dominant Contributions between Direct and Indirect Impacts of Long-Term Urbanization on Plant Net Primary Productivity in Beijing
Abstract
:1. Introduction
- (1)
- Develop an improved, innovative framework to analyze the direct and indirect impacts of urbanization on NPP, specifically at the pixel level;
- (2)
- Analyze the temporal and spatial changes of direct and indirect impacts and their driving mechanisms. Determine which impacts of long-term urbanization contribute the most to the impacts of urbanization on the NPP of Beijing;
- (3)
- Estimate the carbon loss attributable to Beijing’s urbanization over the past two decades and propose a green space planning strategy that will effectively reduce this loss.
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Methods
2.2.1. Estimating NPP Using the CASA Model
2.2.2. Analysis of Urban Expansion Patterns
2.2.3. The Dynamic Influence Framework of Urbanization on NPP
2.2.4. Analysis of Dynamic Changes in NPP Trend
2.2.5. Geoda Spatial Autocorrelation Analysis
3. Results
3.1. The Urban Expansion Process of Beijing over the Last 20 Years
3.2. Spatiotemporal Changes in Net Primary Productivity
3.2.1. Temporal Characteristics of Net Primary Productivity
3.2.2. Spatial Characteristics of Net Primary Productivity
3.3. Direct and Indirect Impacts of Urbanization on NPP
3.3.1. Inter-Annual Variation
3.3.2. Regional Differences
3.4. Analysis of Indirect Impact Driving Factors of Urbanization
3.4.1. Correlation Analysis
3.4.2. Seasonal Heterogeneity
4. Discussion
4.1. Evaluation of NPP Simulation Results
4.2. Necessity of Separating Direct and Indirect Impacts
4.3. Spatial Heterogeneity of Direct and Indirect Impacts
4.4. Exploring the Impact of Urbanization on Regional Carbon Budgets
4.5. Limitations and Future Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CASA | Carnegie Ames Stanford Approach |
CC | Capital Core |
DEM | Digital Elevation Model |
EC | Ecological Conservation |
FE | Function Expansion |
GEE | Google Earth Engine |
GFC | Global Forest Change |
LISA | Local Indicators of Spatial Association |
LULC | Land Use and Land Cover |
MODIS | Moderate Resolution Imaging Spectroradiometer |
ND | New Developing |
NDVI | Normalized Difference Vegetation Index |
NPP | Net Primary Productivity |
PEI | Proximity Expansion Index |
Appendix A
References
- Zhang, L.; Yang, L.; Zohner, C.M.; Crowther, T.W.; Li, M.; Shen, F.; Guo, M.; Qin, J.; Yao, L.; Zhou, C. Direct and Indirect Impacts of Urbanizationon Vegetation Growth across the World’s Cities. Sci. Adv. 2022, 8, eabo0095. [Google Scholar] [CrossRef]
- Du, J.; Fu, Q.; Fang, S.; Wu, J.; He, P.; Quan, Z. Effects of Rapid Urbanization on Vegetation Cover in the Metropolises of China over the Last Four Decades. Ecol. Indic. 2019, 107, 105458. [Google Scholar] [CrossRef]
- He, Q.; Zeng, C.; Xie, P.; Tan, S.; Wu, J. Comparison of Urban Growth Patterns and Changes between Three Urban Agglomerations in China and Three Metropolises in the USA from 1995 to 2015. Sustain. Cities Soc. 2019, 50, 101649. [Google Scholar] [CrossRef]
- Tian, Y.; Tsendbazar, N.E.; van Leeuwen, E.; Fensholt, R.; Herold, M. A Global Analysis of Multifaceted Urbanization Patterns Using Earth Observation Data from 1975 to 2015. Landsc. Urban Plan. 2022, 219, 104316. [Google Scholar] [CrossRef]
- Chen, W.; Zeng, J.; Li, N. Change in Land-Use Structure Due to Urbanisation in China. J. Clean. Prod. 2021, 321, 128986. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of Logistic Regression, Markov Chain and Cellular Automata Models to Simulate Urban Expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Luo, Q.; Zhou, J.; Li, Z.; Yu, B. Spatial Differences of Ecosystem Services and Their Driving Factors: A Comparation Analysis among Three Urban Agglomerations in China’s Yangtze River Economic Belt. Sci. Total Environ. 2020, 725, 138452. [Google Scholar] [CrossRef] [PubMed]
- Deng, S. Exploring the Relationship between New-Type Urbanization and Sustainable Urban Land Use: Evidence from Prefecture-Level Cities in China. Sustain. Comput. Inform. Syst. 2021, 30, 100446. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.; Yang, L.; Mu, K.; Zhang, M.; Liu, J. Urban Heat Island Effects of Various Urban Morphologies under Regional Climate Conditions. Sci. Total Environ. 2020, 743, 140589. [Google Scholar] [CrossRef]
- Qiu, S.; Xu, C.; Wang, F.; Yu, Q. Potential Grading Refrigeration System? Based on Urban Agglomeration Thermal Environment Analysis Perspective. Sustain. Cities Soc. 2023, 97, 104736. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Duren, R.; Gurney, K.R.; Grimm, N.; Kort, E.A.; Larson, E.; Shrestha, G. Urbanization and the Carbon Cycle: Current Capabilities and Research Outlook from the Natural Sciences Perspective. Earth’s Futur. 2014, 2, 473–495. [Google Scholar] [CrossRef]
- Cuo, L.; Zhang, Y.; Ri, X.; Zhou, B. Decadal Change and Inter-Annual Variability of Net Primary Productivity on the Tibetan Plateau. Clim. Dyn. 2021, 56, 1837–1857. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Wang, Q.; Du, X.; Li, J.; Gang, C.; Zhou, W.; Wang, Z. Evaluating the Responses of Net Primary Productivity and Carbon Use Efficiency of Global Grassland to Climate Variability along an Aridity Gradient. Sci. Total Environ. 2019, 652, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Fang, J.; Zhou, L.; Zhu, B.; Tan, K.; Tao, S. Changes in Vegetation Net Primary Productivity from 1982 to 1999 in China. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Peng, J.; Shen, H.; Wu, W.; Liu, Y.; Wang, Y. Net Primary Productivity (NPP) Dynamics and Associated Urbanization Driving Forces in Metropolitan Areas: A Case Study in Beijing City, China. Landsc. Ecol. 2016, 31, 1077–1092. [Google Scholar] [CrossRef]
- Sun, J.; Yue, Y.; Niu, H. Evaluation of NPP Using Three Models Compared with MODIS-NPP Data over China. PLoS ONE 2021, 16, e0252149. [Google Scholar] [CrossRef] [PubMed]
- Hadian, F.; Jafari, R.; Bashari, H.; Tartesh, M.; Clarke, K.D. Estimation of Spatial and Temporal Changes in Net Primary Production Based on Carnegie Ames Stanford Approach (CASA) Model in Semi-Arid Rangelands of Semirom County, Iran. J. Arid Land 2019, 11, 477–494. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, S.; Zhou, D. Prevalent Vegetation Growth Enhancement in Urban Environment. Proc. Natl. Acad. Sci. USA 2016, 113, 6313–6318. [Google Scholar] [CrossRef]
- Zhuang, Q.; Shao, Z.; Li, D.; Huang, X.; Altan, O.; Wu, S.; Li, Y. Isolating the Direct and Indirect Impacts of Urbanization on Vegetation Carbon Sequestration Capacity in a Large Oasis City: Evidence from Urumqi, China. Geo-Spat. Inf. Sci. 2022, 26, 379–391. [Google Scholar] [CrossRef]
- Mu, W.; Zhu, X.; Ma, W.; Han, Y.; Huang, H.; Huang, X. Impact Assessment of Urbanization on Vegetation Net Primary Productivity: A Case Study of the Core Development Area in Central Plains Urban Agglomeration, China. Environ. Res. 2023, 229, 115995. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.; Bai, Y.; Sun, Y.; Yang, J.; Lin, K.; Pei, F.; Yan, Y. Determining the Impacts of Climate Change and Urban Expansion on Terrestrial Net Primary Production in China. J. Environ. Manag. 2019, 240, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.; Shao, Z.; Li, D.; Huang, X.; Li, Y.; Altan, O.; Wu, S. Impact of Global Urban Expansion on the Terrestrial Vegetation Carbon Sequestration Capacity. Sci. Total Environ. 2023, 879, 163074. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.; Zeng, L.; Hu, W.; Wang, P.; Yan, Z.; He, W.; Zhang, Y.; Huang, Z.; Xiao, W. The Impacts of Climate Changes and Human Activities on Net Primary Productivity Vary across an Ecotone Zone in Northwest China. Sci. Total Environ. 2020, 714, 136691. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jiang, H.; Chen, Y.; Cai, Z. Spatial-Temporal Patterns of Net Primary Production in Anji (China) between 1984 and 2014. Ecol. Indic. 2020, 110, 105954. [Google Scholar] [CrossRef]
- Chen, T.; Huang, Q.; Liu, M.; Li, M.; Qu, L.; Deng, S.; Chen, D. Decreasing Net Primary Productivity in Response to Urbanization in Liaoning Province, China. Sustainability 2017, 9, 162. [Google Scholar] [CrossRef]
- Liu, T.; Huang, D.; Tan, X.; Kong, F. Planning Consistency and Implementation in Urbanizing China: Comparing Urban and Land Use Plans in Suburban Beijing. Land Use Policy 2020, 94, 104498. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, P.; Lei, T.; Geng, G.; Liu, J.; Mo, X.; Li, X.; Zhou, H.; Wu, J. The Alleviating Trend of Drought in the Huang-Huai-Hai Plain of China Based on the Daily SPEI. Int. J. Climatol. 2015, 35, 3760–3769. [Google Scholar] [CrossRef]
- Shu, S.; Liu, C.; Shi, R.; Gao, W. Research on Spatial Interpolation of Meteorological Elements in Anhui Province Based on ANUSPLIN. In Proceedings of the Remote Sensing and Modeling of Ecosystems for Sustainability VIII, San Diego, CA, USA, 21–25 August 2011. [Google Scholar]
- Pan, H.H.; Wu, S.R.; Ji, Q.Q.; Du, Z.Q.; Zhang, H. Spatio-Temporal Pattern and Driving Forces of Ecosystem Services in Coalfields of Shanxi Province, China. Chin. J. Appl. Ecol. 2021, 32, 3923–3932. [Google Scholar] [CrossRef]
- Wen-Quan, Z.; Yao-Zhong, P.; Jin-Shui, Z. Estimation of Net Primary Productivity of Chinese Terrestrial Vegetation Based on Remote Sensing. Chin. J. Plant Ecol. 2007, 31, 413–424. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; He, H.; Yu, D.; Hu, H. Simulation of Maximum Light Use Efficiency for Some Typical Vegetation Types in China. Chin. Sci. Bull. 2006, 51, 457–463. [Google Scholar] [CrossRef]
- Jiao, L.; Liu, J.; Xu, G.; Dong, T.; Gu, Y.; Zhang, B.; Liu, Y.; Liu, X. Proximity Expansion Index: An Improved Approach to Characterize Evolution Process of Urban Expansion. Comput. Environ. Urban Syst. 2018, 70, 102–112. [Google Scholar] [CrossRef]
- Guan, X.; Shen, H.; Li, X.; Gan, W.; Zhang, L. A Long-Term and Comprehensive Assessment of the Urbanization-Induced Impacts on Vegetation Net Primary Productivity. Sci. Total Environ. 2019, 669, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, M.; Ren, F.; Tian, L. Estimation and Spatio-Temporal Change Analysis of NPP in Subtropical Forests: A Case Study of Shaoguan, Guangdong, China. Remote Sens. 2022, 14, 2541. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, R.; Wen, Z.; Khalifa, M.; Zheng, C.; Ren, H.; Zhang, Z.; Wang, Z. Assessing the Impacts of Drought on Net Primary Productivity of Global Land Biomes in Different Climate Zones. Ecol. Indic. 2021, 130, 108146. [Google Scholar] [CrossRef]
- Kumari, S.; Lal, P.; Kumar, A. Spatial Heterogeneity for Urban Built-up Footprint and Its Characterization Using Microwave Remote Sensing. Adv. Sp. Res. 2022, 70, 3822–3832. [Google Scholar] [CrossRef]
- Li, C.; Zou, Y.; He, J.; Zhang, W.; Gao, L.; Zhuang, D. Response of Vegetation Phenology to the Interaction of Temperature and Precipitation Changes in Qilian Mountains. Remote Sens. 2022, 14, 1248. [Google Scholar] [CrossRef]
- Anselin, L. From SpaceStat to CyberGIS: Twenty Years of Spatial Data Analysis Software. Int. Reg. Sci. Rev. 2012, 35, 131–157. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. The Role of City Size and Urban Form in the Surface Urban Heat Island. Sci. Rep. 2017, 7, 4791. [Google Scholar] [CrossRef]
- Sarrat, C.; Lemonsu, A.; Masson, V.; Guedalia, D. Impact of Urban Heat Island on Regional Atmospheric Pollution. Atmos. Environ. 2006, 40, 1743–1758. [Google Scholar] [CrossRef]
- Liang, L.; Gong, P. Urban and Air Pollution: A Multi-City Study of Long-Term Effects of Urban Landscape Patterns on Air Quality Trends. Sci. Rep. 2020, 10, 18618. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, H. Spatiotemporal Simulation of Land-Use/Land Cover Scenarios and Impacts on the Dynamics of Vegetation Net Primary Productivity in the Wuhan Metropolitan Area, Central China. Stoch. Environ. Res. Risk Assess. 2023, 37, 1137–1162. [Google Scholar] [CrossRef]
- Xue, Y.; Bai, X.; Zhao, C.; Tan, Q.; Li, Y.; Luo, G.; Wu, L.; Chen, F.; Li, C.; Ran, C.; et al. Spring Photosynthetic Phenology of Chinese Vegetation in Response to Climate Change and Its Impact on Net Primary Productivity. Agric. For. Meteorol. 2023, 342, 109734. [Google Scholar] [CrossRef]
- You, Y.; Wang, S.; Pan, N.; Ma, Y.; Liu, W. Growth Stage-Dependent Responses of Carbon Fixation Process of Alpine Grasslands to Climate Change over the Tibetan Plateau, China. Agric. For. Meteorol. 2020, 291, 108085. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, B.; Zeng, H. How Does Urbanization Affect Vegetation Productivity in the Coastal Cities of Eastern China? Sci. Total Environ. 2022, 811, 152356. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Wang, L.; Lin, A.; Yu, D.; Yuan, M.; Li, C. Distinguishing the Impacts of Climate Change and Anthropogenic Factors on Vegetation Dynamics in the Yangtze River Basin, China. Ecol. Indic. 2020, 108, 105724. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, T.; Yi, G.; He, D.; Zhou, X.; Li, J.; Bie, X.; Miao, J. Dynamic Changes of Ndvi in the Growing Season of the Tibetan Plateau during the Past 17 Years and Its Response to Climate Change. Int. J. Environ. Res. Public Health 2019, 16, 3452. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Asrar, G.R.; Meng, L. Characterizing Spatiotemporal Dynamics in Phenology of Urban Ecosystems Based on Landsat Data. Sci. Total Environ. 2017, 605–606, 721–734. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhao, X.; Wu, D.; Tang, R.; Du, X.; Wang, H.; Zhao, J.; Xu, P.; Peng, Y. Impact of Urbanization and Climate on Vegetation Coverage in the Beijing-Tianjin-Hebei Region of China. Remote Sens. 2019, 11, 2452. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, Drivers and Feedbacks of Global Greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Keenan, T.F.; Riley, W.J. Greening of the Land Surface in the World’s Cold Regions Consistent with Recent Warming. Nat. Clim. Chang. 2018, 8, 825–828. [Google Scholar] [CrossRef] [PubMed]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The Cooling Efficiency of Urban Landscape Strategies in a Hot Dry Climate. Landsc. Urban Plan. 2009, 92, 179–186. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and Its Drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Li, D.K.; Fan, J.Z.; Wang, J. Variation Characteristics of Vegetation Net Primary Productivity in Shaanxi Province Based on MO17A3. Chin. J. Ecol. 2011, 30, 2776–2782. [Google Scholar]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Running, S.W.; Zhao, M.; Costa, M.H.; Kirschbaum, A.A.; Ham, J.M.; Saleska, S.R.; et al. Evaluation of MODIS NPP and GPP Products across Multiple Biomes. Remote Sens. Environ. 2006, 102, 282–292. [Google Scholar] [CrossRef]
- Pan, J.; Dong, L. Spatio-Temporal Variation in Vegetation Net Primary Productivity and Its Relationship with Climatic Factors in the Shule River Basin from 2001 to 2010. Hum. Ecol. Risk Assess. 2018, 24, 797–818. [Google Scholar] [CrossRef]
- Jia, W.; Zhao, S.; Liu, S. Vegetation Growth Enhancement in Urban Environments of the Conterminous United States. Glob. Chang. Biol. 2018, 24, 4084–4094. [Google Scholar] [CrossRef]
- Elmore, A.J.; Guinn, S.M.; Minsley, B.J.; Richardson, A.D. Landscape Controls on the Timing of Spring, Autumn, and Growing Season Length in Mid-Atlantic Forests. Glob. Chang. Biol. 2012, 18, 656–674. [Google Scholar] [CrossRef]
- Mimet, A.; Pellissier, V.; Quénol, H.; Aguejdad, R.; Dubreuil, V.; Rozé, F. Urbanisation Induces Early Flowering: Evidence from Platanus Acerifolia and Prunus Cerasus. Int. J. Biometeorol. 2009, 53, 287–298. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhang, L.; Liu, S. Remotely Sensed Assessment of Urbanization Effects on Vegetation Phenology in China’s 32 Major Cities. Remote Sens. Environ. 2016, 176, 272–281. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, Z.F.; Cheng, J.; Yu, Q.; Rao, X.Q. Impacts of Urbanization on Net Primary Productivity in the Pearl River Delta, China. Int. J. Plant Prod. 2015, 9, 581–598. [Google Scholar]
- Wilson, E.H.; Hurd, J.D.; Civco, D.L.; Prisloe, M.P.; Arnold, C. Development of a Geospatial Model to Quantify, Describe and Map Urban Growth. Remote Sens. Environ. 2003, 86, 275–285. [Google Scholar] [CrossRef]
- van Vliet, J. Direct and Indirect Loss of Natural Area from Urban Expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Zhong, J.; Liu, J.; Jiao, L.; Lian, X.; Xu, Z.; Zhou, Z. Assessing the Comprehensive Impacts of Different Urbanization Process on Vegetation Net Primary Productivity in Wuhan, China, from 1990 to 2020. Sustain. Cities Soc. 2021, 75, 103295. [Google Scholar] [CrossRef]
- Fang, J.Y.; Guo, Z.; Piao, S.L.; Chen, A.P. Terrestrial Vegetation Carbon Sinks in China, 1981–2000. Sci. China Ser. D Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The Carbon Balance of Terrestrial Ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Zhao, A.; Xiang, K.; Zhang, A.; Zhang, X. Spatial-Temporal Evolution of Meteorological and Groundwater Droughts and Their Relationship in the North China Plain. J. Hydrol. 2022, 610, 127903. [Google Scholar] [CrossRef]
- Jiansheng, L. Building a National Cultural Center in the Context of the New Beijing Urban Master Plan. In Analysis of the Development of Beijing (2018); Palgrave Macmillan: Singapore, 2019. [Google Scholar]
Expansion Type | PEI Value Range | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | ||||
---|---|---|---|---|---|---|---|---|---|
Number | Proportion | Number | Proportion | Number | Proportion | Number | Proportion | ||
Infilling | (2/3,1] | 1044 | 23.79 | 27 | 0.63 | 5 | 0.13 | 2 | 0.12 |
Edge-expansion | (1/2,2/3] | 3157 | 71.93 | 3143 | 73.62 | 2701 | 70.43 | 1074 | 65.89 |
Leap | (0,1/2] | 188 | 4.28 | 1099 | 25.74 | 1129 | 29.44 | 554 | 33.99 |
Unit: gC·m−2·year−1 | Period | ND | FE | CC | EC | BJ |
---|---|---|---|---|---|---|
NPP | 2000–2020 | 4.34 | 6.23 | 6.65 | 5.57 | 5.16 |
NPPII | 2000–2020 | 0.41 | 0.29 | 0.48 | 0.09 | 0.22 |
Period | ND | FE | CC | EC | BJ | |
---|---|---|---|---|---|---|
NPPD (TgC) | 2000–2005 | −0.196 | −0.077 | −8.929 × 10−5 | −0.045 | −0.319 |
2005–2010 | −0.191 | −0.050 | −1.727 × 10−5 | −0.043 | −0.284 | |
2010–2015 | −0.191 | −0.035 | 1.439 × 10−5 | −0.049 | −0.275 | |
2015–2020 | −0.073 | −0.016 | −1.067 × 10−4 | −0.018 | −0.107 | |
2000–2020 | −0.651 | −0.179 | −1.988 × 10−4 | −0.156 | −0.985 | |
NPPLV (gC·m−2) | 2000 | 657.03 | 800.87 | 262.37 | 612.69 | 642.51 |
2020 | 1160.21 | 1380.96 | 444.91 | 827.23 | 1002.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Lu, D.; Xu, B.; Ren, R.; Wang, Z.; Feng, Z. Determining the Dominant Contributions between Direct and Indirect Impacts of Long-Term Urbanization on Plant Net Primary Productivity in Beijing. Remote Sens. 2024, 16, 444. https://doi.org/10.3390/rs16030444
Chen Y, Lu D, Xu B, Ren R, Wang Z, Feng Z. Determining the Dominant Contributions between Direct and Indirect Impacts of Long-Term Urbanization on Plant Net Primary Productivity in Beijing. Remote Sensing. 2024; 16(3):444. https://doi.org/10.3390/rs16030444
Chicago/Turabian StyleChen, Yuan, Dangui Lu, Bo Xu, Rui Ren, Zhichao Wang, and Zhongke Feng. 2024. "Determining the Dominant Contributions between Direct and Indirect Impacts of Long-Term Urbanization on Plant Net Primary Productivity in Beijing" Remote Sensing 16, no. 3: 444. https://doi.org/10.3390/rs16030444
APA StyleChen, Y., Lu, D., Xu, B., Ren, R., Wang, Z., & Feng, Z. (2024). Determining the Dominant Contributions between Direct and Indirect Impacts of Long-Term Urbanization on Plant Net Primary Productivity in Beijing. Remote Sensing, 16(3), 444. https://doi.org/10.3390/rs16030444