Mapping Small-Scale Willow Crops and Their Health Status Using Sentinel-2 Images in Complex Agricultural Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Satellite Images for Classification
2.2.2. Ground Reference Data
2.3. Image Classification
2.4. Post-Classification Processing
2.5. NDVI Time Series
2.6. Climate Datasets
2.7. Statistical Analysis
3. Results
3.1. RF Classification Accuracy
3.2. RF Classification Results
3.3. NDVI Inter-Annual Fluctuation
3.4. Climatic Variable Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kowalczyk, Z.; Kwaśniewski, D. Environmental impact of the cultivation of energy willow in Poland. Sci. Rep. 2021, 11, 1–15. [Google Scholar]
- Fischer, G.; Schrattenholzer, L. Global bioenergy potentials through 2050. Biomass Bioenergy 2001, 20, 151–159. [Google Scholar] [CrossRef]
- Kopetz, H. Build a biomass energy market. Nature 2013, 494, 29–31. [Google Scholar] [CrossRef]
- Murphy, F.; Devlin, G.; McDonnell, K. Energy requirements and environmental impacts associated with the production of short rotation willow (Salix sp.) chip in Ireland. GCB Bioenergy 2014, 6, 727–739. [Google Scholar] [CrossRef]
- Scriba, C.; Borz, S.; Talagai, N. Estimating dry mass and bark proportion in one-year shoots yielded by one-year Salix viminalis L. plantations in Central Romania. Rev. Pădur. 2014, 129, 57–66. [Google Scholar]
- Borz, S.A.; Nita, M.D.; Talagai, N.; Scriba, C.; Grigolato, S.; Proto, A.R. Performance of small-scale technology in planting and cutback operations of short-rotation willow crops. Trans. ASABE 2019, 62, 167–176. [Google Scholar] [CrossRef]
- Ozdogan, M. The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis. Remote Sens. Environ. 2010, 114, 1190–1204. [Google Scholar] [CrossRef]
- Liu, X.; Zhai, H.; Shen, Y.; Lou, B.; Jiang, C.; Li, T.; Hussain, S.B.; Shen, G. Large-scale crop mapping from multisource remote sensing images in google earth engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 414–427. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Zarin, D.J.; Harris, N.L.; Baccini, A.; Aksenov, D.; Hansen, M.C.; Azevedo-Ramos, C.; Azevedo, T.; Margono, B.A.; Alencar, A.C.; Gabris, C. Can carbon emissions from tropical deforestation drop by 50% in 5 years? Glob. Biol. 2016, 22, 1336–1347. [Google Scholar] [CrossRef]
- Till, N. From Reference Levels to Results Reporting: REDD+ under the UNFCCC. For. Clim. Chang. Work. Pap. 2017, 15. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef]
- Di Tommaso, S.; Wang, S.; Lobell, D.B. Combining GEDI and Sentinel-2 for wall-to-wall mapping of tall and short crops. Environ. Res. Lett. 2021, 16, 125002. [Google Scholar] [CrossRef]
- Calderón-Loor, M.; Hadjikakou, M.; Bryan, B.A. High-resolution wall-to-wall land-cover mapping and land change assessment for Australia from 1985 to 2015. Remote Sens. Environ. 2021, 252, 112148. [Google Scholar] [CrossRef]
- Zemin, L.; Zong, W. Image classification optimization algorithm based on SVM. J. Multimed. 2013, 8, 496–502. [Google Scholar]
- Lowder, S.K.; Skoet, J.; Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef]
- Masters, W.A.; Djurfeldt, A.A.; De Haan, C.; Hazell, P.; Jayne, T.; Jirström, M.; Reardon, T. Urbanization and farm size in Asia and Africa: Implications for food security and agricultural research. Glob. Food Secur. 2013, 2, 156–165. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. GISci. Remote Sens. 2018, 55, 221–242. [Google Scholar] [CrossRef]
- Aljahdali, M.O.; Munawar, S.; Khan, W.R. Monitoring mangrove forest degradation and regeneration: Landsat time series analysis of moisture and vegetation indices at Rabigh Lagoon, Red Sea. Forests 2021, 12, 52. [Google Scholar] [CrossRef]
- Kogan, F.N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens. 1990, 11, 1405–1419. [Google Scholar] [CrossRef]
- Rhyma, P.; Norizah, K.; Hamdan, O.; Faridah-Hanum, I.; Zulfa, A. Integration of normalised different vegetation index and Soil-Adjusted Vegetation Index for mangrove vegetation delineation. Remote Sens. Appl. Soc. Environ. 2020, 17, 100280. [Google Scholar] [CrossRef]
- Clevers, J.G.; Kooistra, L.; Van den Brande, M.M. Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef]
- de Jong, R.; Verbesselt, J.; Schaepman, M.E.; De Bruin, S. Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Glob. Chang. Biol. 2012, 18, 642–655. [Google Scholar] [CrossRef]
- Chen, F.; Bai, X.; Liu, F.; Luo, G.; Tian, Y.; Qin, L.; Li, Y.; Xu, Y.; Wang, J.; Wu, L. Analysis long-term and spatial changes of forest cover in typical karst areas of China. Land 2022, 11, 1349. [Google Scholar] [CrossRef]
- Madson, A.; Dimson, M.; Fortini, L.B.; Kawelo, K.; Ticktin, T.; Keir, M.; Dong, C.; Ma, Z.; Beilman, D.W.; Kay, K. A near four-decade time series shows the Hawaiian Islands have been browning since the 1980s. Environ. Manag. 2023, 71, 965–980. [Google Scholar] [CrossRef] [PubMed]
- Vuorinne, I.; Heiskanen, J.; Pellikka, P.K. Assessing leaf biomass of agave sisalana using sentinel-2 vegetation indices. Remote Sens. 2021, 13, 233. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Hmimina, G.; Dufrêne, E.; Pontailler, J.-Y.; Delpierre, N.; Aubinet, M.; Caquet, B.; De Grandcourt, A.; Burban, B.; Flechard, C.; Granier, A. Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Remote Sens. Environ. 2013, 132, 145–158. [Google Scholar] [CrossRef]
- Cai, Z.; Jönsson, P.; Jin, H.; Eklundh, L. Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data. Remote Sens. 2017, 9, 1271. [Google Scholar] [CrossRef]
- Verhoeven, V.B.; Dedoussi, I.C. Annual satellite-based NDVI-derived land cover of Europe for 2001–2019. J. Environ. Manag. 2022, 302, 113917. [Google Scholar] [CrossRef] [PubMed]
- Ramanath, A.; Muthusrinivasan, S.; Xie, Y.; Shekhar, S.; Ramachandra, B. Ndvi versus cnn features in deep learning for land cover clasification of aerial images. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 6483–6486. [Google Scholar]
- Jiang, L.; Liu, Y.; Wu, S.; Yang, C. Analyzing ecological environment change and associated driving factors in China based on NDVI time series data. Ecol. Indic. 2021, 129, 107933. [Google Scholar] [CrossRef]
- Nanzad, L.; Zhang, J.; Tuvdendorj, B.; Nabil, M.; Zhang, S.; Bai, Y. NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. J. Arid Environ. 2019, 164, 69–77. [Google Scholar] [CrossRef]
- Lawley, V.; Lewis, M.; Clarke, K.; Ostendorf, B. Site-based and remote sensing methods for monitoring indicators of vegetation condition: An Australian review. Ecol. Indic. 2016, 60, 1273–1283. [Google Scholar] [CrossRef]
- Leon, J.R.R.; Van Leeuwen, W.J.; Casady, G.M. Using MODIS-NDVI for the modeling of post-wildfire vegetation response as a function of environmental conditions and pre-fire restoration treatments. Remote Sens. 2012, 4, 598–621. [Google Scholar] [CrossRef]
- Talagai, N.; Marcu, M.V.; Zimbalatti, G.; Proto, A.R.; Borz, S.A. Productivity in partly mechanized planting operations of willow short rotation coppice. Biomass Bioenergy 2020, 138, 105609. [Google Scholar] [CrossRef]
- Dimitriou, I.; Mola-Yudego, B. Poplar and willow plantations on agricultural land in Sweden: Area, yield, groundwater quality and soil organic carbon. For. Ecol. Manag. 2017, 383, 99–107. [Google Scholar] [CrossRef]
- Choudhury, M.R.; Christopher, J.; Das, S.; Apan, A.; Menzies, N.W.; Chapman, S.; Mellor, V.; Dang, Y.P. Detection of calcium, magnesium, and chlorophyll variations of wheat genotypes on sodic soils using hyperspectral red edge parameters. Environ. Technol. Innov. 2022, 27, 102469. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Liu, Q.; Lin, S.; Huete, A.; Liu, L.; Croft, H.; Clevers, J.G.; Zeng, Y.; Wang, X. A novel red-edge spectral index for retrieving the leaf chlorophyll content. Methods Ecol. Evol. 2022, 13, 2771–2787. [Google Scholar] [CrossRef]
- Holzman, M.E.; Rivas, R.E.; Bayala, M.I. Relationship between TIR and NIR-SWIR as indicator of vegetation water availability. Remote Sens. 2021, 13, 3371. [Google Scholar] [CrossRef]
- Chong, L.; Liu, H.-J.; Lu, L.-P.; Liu, Z.-R.; Kong, F.-C.; Zhang, X.-L. Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine. J. Integr. Agric. 2021, 20, 1944–1957. [Google Scholar]
- Clevers, J.G.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Marta, S. Planet Imagery Product Specifications; Planet Labs: San Francisco, CA, USA, 2018; Volume 91. [Google Scholar]
- Shendryk, Y.; Rist, Y.; Ticehurst, C.; Thorburn, P. Deep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery. ISPRS J. Photogramm. Remote Sens. 2019, 157, 124–136. [Google Scholar] [CrossRef]
- Barrett, J.P.; Philbrook, J.S. Dot grid area estimates: Precision by repeated trials. J. For. 1970, 68, 149–151. [Google Scholar]
- Bonnor, G. The error of area estimates from dot grids. Can. J. For. Res. 1975, 5, 10–17. [Google Scholar] [CrossRef]
- Nomura, K.; Mitchard, E.T. More than meets the eye: Using Sentinel-2 to map small plantations in complex forest landscapes. Remote Sens. 2018, 10, 1693. [Google Scholar] [CrossRef]
- Beygi Heidarlou, H.; Banj Shafiei, A.; Nasiri, V.; Niţă, M.D.; Borz, S.A.; Lopez-Carr, D. Impact of Iran’s Forest Nationalization Law on Forest Cover Changes over Six Decades: A Case Study of a Zagros Sparse Coppice Oak Forest. Sensors 2023, 23, 871. [Google Scholar] [CrossRef]
- Schulz, D.; Yin, H.; Tischbein, B.; Verleysdonk, S.; Adamou, R.; Kumar, N. Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel. ISPRS J. Photogramm. Remote Sens. 2021, 178, 97–111. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests—Random Features, Technical Report 567; Statistics Department, University of California: Berkeley, CA, USA, 1999. [Google Scholar]
- Lee, J.S.H.; Wich, S.; Widayati, A.; Koh, L.P. Detecting industrial oil palm plantations on Landsat images with Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2016, 4, 219–224. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P. Some issues in the classification of DAIS hyperspectral data. Int. J. Remote Sens. 2006, 27, 2895–2916. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Van Der Meer, B. Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sens. Environ. 2004, 91, 354–376. [Google Scholar] [CrossRef]
- Le Bris, A.; Chehata, N.; Briottet, X.; Paparoditis, N. Spectral band selection for urban material classification using hyperspectral libraries. In Proceedings of the 23 ISPRS Congress, International Society for Photogrammetry and Remote Sensing (ISPRS), Prague, Czech Republic, 12–19 July 2016; pp. 33–40. [Google Scholar]
- da Silva, V.S.; Salami, G.; da Silva, M.I.O.; Silva, E.A.; Monteiro Junior, J.J.; Alba, E. Methodological evaluation of vegetation indexes in land use and land cover (LULC) classification. Geol. Ecol. Landsc. 2020, 4, 159–169. [Google Scholar] [CrossRef]
- Rouse, R.A. Conformational analysis of saturated heterocycles substituted final ozonides. Int. J. Quantum Chem. 1973, 7, 289–294. [Google Scholar] [CrossRef]
- Martín-Sotoca, J.J.; Saa-Requejo, A.; Moratiel, R.; Dalezios, N.; Faraslis, I.; Tarquis, A.M. Statistical analysis for satellite-index-based insurance to define damaged pasture thresholds. Nat. Hazards Earth Syst. Sci. 2019, 19, 1685–1702. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space Res. 1998, 22, 689–692. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Pizarro, S.E.; Pricope, N.G.; Vargas-Machuca, D.; Huanca, O.; Ñaupari, J. Mapping Land Cover Types for Highland Andean Ecosystems in Peru Using Google Earth Engine. Remote Sens. 2022, 14, 1562. [Google Scholar] [CrossRef]
- Baumann, M.; Radeloff, V.C.; Avedian, V.; Kuemmerle, T. Land-use change in the Caucasus during and after the Nagorno-Karabakh conflict. Reg. Environ. Chang. 2015, 15, 1703–1716. [Google Scholar] [CrossRef]
- Mercier, A.; Betbeder, J.; Rumiano, F.; Baudry, J.; Gond, V.; Blanc, L.; Bourgoin, C.; Cornu, G.; Ciudad, C.; Marchamalo, M. Evaluation of Sentinel-1 and 2 time series for land cover classification of forest–agriculture mosaics in temperate and tropical landscapes. Remote Sens. 2019, 11, 979. [Google Scholar] [CrossRef]
- Kpienbaareh, D.; Sun, X.; Wang, J.; Luginaah, I.; Bezner Kerr, R.; Lupafya, E.; Dakishoni, L. Crop type and land cover mapping in northern Malawi using the integration of sentinel-1, sentinel-2, and planetscope satellite data. Remote Sens. 2021, 13, 700. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Zhou, C.; Ou, Y.; Ma, T.; QIN, B. Theoretical perspectives of CA-based geographical system modeling. Prog. Geogr. 2009, 28, 833–838. [Google Scholar]
- Li, T.; Wang, Y.; Liu, C.; Tu, S. Research on identification of multiple cropping index of farmland and regional optimization scheme in China based on NDVI data. Land 2021, 10, 861. [Google Scholar] [CrossRef]
- Deng, S.; Gao, M.; Ren, C.; Li, S.; Liang, Y. Extraction of Sugarcane Planting Area Based on Similarity of NDVI Time Series. IEEE Access 2022, 10, 117362–117373. [Google Scholar] [CrossRef]
- Ghebrezgabher, M.G.; Yang, T.; Yang, X.; Sereke, T.E. Assessment of NDVI variations in responses to climate change in the Horn of Africa. Egypt. J. Remote Sens. Space Sci. 2020, 23, 249–261. [Google Scholar] [CrossRef]
- Prăvălie, R.; Sîrodoev, I.; Nita, I.-A.; Patriche, C.; Dumitraşcu, M.; Roşca, B.; Tişcovschi, A.; Bandoc, G.; Săvulescu, I.; Mănoiu, V. NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in Romania during 1987–2018. Ecol. Indic. 2022, 136, 108629. [Google Scholar] [CrossRef]
- Stamford, J.D.; Vialet-Chabrand, S.; Cameron, I.; Lawson, T. Development of an accurate low cost NDVI imaging system for assessing plant health. Plant Methods 2023, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Ienco, D.; Interdonato, R.; Gaetano, R.; Minh, D.H.T. Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture. ISPRS J. Photogramm. Remote Sens. 2019, 158, 11–22. [Google Scholar] [CrossRef]
- Nowak, B.; Marliac, G.; Michaud, A. Estimation of winter soil cover by vegetation before spring-sown crops for mainland France using multispectral satellite imagery. Environ. Res. Lett. 2021, 16, 064024. [Google Scholar] [CrossRef]
- ESA. Level-1C Cloud Masks-Sentinel-2 MSI Technical Guide-Sentinel Online. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks (accessed on 8 May 2023).
- GEE. Landsat Algorithms in Google Earth Engine API. Available online: https://developers.google.com/earth-engine/landsat (accessed on 8 May 2023).
- Gärtner, P. How Cloudy Is My Sentinel-2 Image Collection?—The ‘QA60′ Band Gives Insights. Available online: https://philippgaertner.github.io/2020/08/percent-cloud-cover/ (accessed on 14 August 2020).
- Amini, S.; Homayouni, S.; Safari, A.; Darvishsefat, A.A. Object-based classification of hyperspectral data using Random Forest algorithm. Geo-Spat. Inf. Sci. 2018, 21, 127–138. [Google Scholar] [CrossRef]
- Su, T.; Zhang, S. Local and global evaluation for remote sensing image segmentation. ISPRS J. Photogramm. Remote Sens. 2017, 130, 256–276. [Google Scholar] [CrossRef]
- Kpienbaareh, D.; Mohammed, K.; Luginaah, I.; Wang, J.; Bezner Kerr, R.; Lupafya, E.; Dakishoni, L. Estimating Groundnut Yield in Smallholder Agriculture Systems Using PlanetScope Data. Land 2022, 11, 1752. [Google Scholar] [CrossRef]
- Gašparović, M.; Jogun, T. The effect of fusing Sentinel-2 bands on land-cover classification. Int. J. Remote Sens. 2018, 39, 822–841. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Coops, N.C.; Stone, C. A comparison of field-based and modelled reflectance spectra from damaged Pinus radiata foliage. Aust. J. Bot. 2005, 53, 417–429. [Google Scholar] [CrossRef]
- McVeagh, P.; Yule, I.; Grafton, M. Pasture yield mapping from your groundspread truck. In Advanced Nutrient Management: Gains from the Past-Goals for the Future; Fertilizer and Lime Research Centre: Palmerston North, New Zealand, 2012. [Google Scholar]
- Liberacki, D.; Kocięcka, J.; Stachowski, P.; Rolbiecki, R.; Rolbiecki, S.; Sadan, H.A.; Figas, A.; Jagosz, B.; Wichrowska, D.; Ptach, W. Water Needs of Willow (Salix L.) in Western Poland. Energies 2022, 15, 484. [Google Scholar] [CrossRef]
- Szwed, M.; Karg, G.; Pińskwar, I.; Radziejewski, M.; Graczyk, D.; Kędziora, A.; Kundzewicz, Z. Climate change and its effect on agriculture, water resources and human health sectors in Poland. Nat. Hazards Earth Syst. Sci. 2010, 10, 1725–1737. [Google Scholar] [CrossRef]
- Hao, F.; Zhang, X.; Ouyang, W.; Skidmore, A.K.; Toxopeus, A. Vegetation NDVI linked to temperature and precipitation in the upper catchments of Yellow River. Environ. Model. Assess. 2012, 17, 389–398. [Google Scholar] [CrossRef]
- Kocur-Bera, K.; Rapiński, J.; Siejka, M.; Leń, P.; Małek, A. Potential of an Area in Terms of Pro-Climate Solutions in a Land Consolidation Project. Sustainability 2023, 15, 9306. [Google Scholar] [CrossRef]
- Mirck, J.; Zalesny, R.S. Mini-review of knowledge gaps in salt tolerance of plants applied to willows and poplars. Int. J. Phytoremediat. 2015, 17, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Mirck, J.; Volk, T.A. Response of three shrub willow varieties (Salix spp.) to storm water treatments with different concentrations of salts. Bioresour. Technol. 2010, 101, 3484–3492. [Google Scholar] [CrossRef] [PubMed]
- Gage, E.A.; Cooper, D.J. Constraints on willow seedling survival in a Rocky Mountain montane floodplain. Wetlands 2004, 24, 908–911. [Google Scholar] [CrossRef]
- Pierzgalski, E.; Mańk, K. Energy crops in aspect of water resources in Poland. In Agro-Energy for Sustainable Agriculture and Rural Development; Slovak University of Agriculture in Nitra: Nitra-Chrenová, Slovakia, 2016; p. 50. [Google Scholar]
- Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Crop water requirements and irrigation schedules for some major crops in Southern Iraq. Water 2019, 11, 756. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Niu, H. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios. Sci. Total Environ. 2019, 656, 373–387. [Google Scholar] [CrossRef]
- Masia, S.; Trabucco, A.; Spano, D.; Snyder, R.L.; Sušnik, J.; Marras, S. A modelling platform for climate change impact on local and regional crop water requirements. Agric. Water Manag. 2021, 255, 107005. [Google Scholar] [CrossRef]
Year | Image Collection | Sensor | Number of Images |
---|---|---|---|
2022 | COPERNICUS/S2_SR | Sentinel-2 | 27 |
2021 | 26 | ||
2020 | 29 | ||
2019 | 18 | ||
2018 | 26 | ||
2017 | 10 |
Land-Use Class | Definition | Total Number of Reference Points (at 7 m Intervals) | |||||
---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | 2022 | ||
Willow | Willow crops | 6431 | 4127 | 5967 | 6043 | 6929 | 7022 |
Non-willow | Other land uses 1 | 7661 | 7662 | 7664 | 7654 | 7656 | 7666 |
SVI 1 | Definition | Formula | Reference |
---|---|---|---|
NDVI | Normalized difference vegetation index | (BNIR − BRED)/(BNIR + BRED) | [56] |
std NDVI | Standard deviation of NDVI | σNDVI | [57] |
GNDVI | Green normalized difference vegetation index | (BNIR − BGREEN)/(BNIR + BGREEN) | [58] |
MSAVI | Modified soil-adjusted vegetation index | [59] | |
EVI | Enhanced vegetation index | [60] |
Time Period | Mission | No. of Images | STMs | No. of Features |
---|---|---|---|---|
2017 to 2022 | Sentinel-2 | 136 | Minimum, maximum, mean, standard deviation, and 25th, 50th, and 75th percentiles | 119 |
Class | 2017 | 2018 | 2019 | ||||||
UA 1 | PA 2 | F 3 | UA | PA | F | UA | PA | F | |
Willow | 99.10 | 98.63 | 98.86 | 99.76 | 99.03 | 99.39 | 99.37 | 99.21 | 99.29 |
Non-willow | 99.48 | 99.87 | 99.67 | 99.41 | 99.53 | 99.47 | 99.48 | 99.87 | 99.67 |
OA 4 | 98.98 | 99.57 | 99.39 | ||||||
K 5 | 97.93 | 99.07 | 98.76 | ||||||
Class | 2020 | 2021 | 2022 | ||||||
UA | PA | F | UA | PA | F | UA | PA | F | |
Willow | 99.67 | 98.71 | 99.19 | 99.70 | 99.01 | 99.35 | 99.76 | 99.63 | 99.74 |
Non-willow | 98.95 | 99.74 | 99.34 | 99.14 | 99.74 | 99.44 | 99.65 | 99.78 | 99.75 |
OA | 99.27 | 99.40 | 99.71 | ||||||
K | 98.53 | 98.79 | 99.41 |
Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
Yearly | Between Groups | 26.067 | 5 | 5.213 | 92.518 | 0.000 |
Within Groups | 126.956 | 2253 | 0.056 | |||
Total | 153.023 | 2258 | ||||
Monthly | Between Groups | 102.18 | 11 | 9.289 | 410.537 | 0.000 |
Within Groups | 50.842 | 2247 | 0.023 | |||
Total | 153.023 | 2258 | ||||
Seasonal | Between Groups | 71.523 | 3 | 23.841 | 659.645 | 0.000 |
Within Groups | 81.5 | 2255 | 0.036 | |||
Total | 153.023 | 2258 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beygi Heidarlou, H.; Oprea-Sorescu, O.; Marcu, M.V.; Borz, S.A. Mapping Small-Scale Willow Crops and Their Health Status Using Sentinel-2 Images in Complex Agricultural Areas. Remote Sens. 2024, 16, 595. https://doi.org/10.3390/rs16030595
Beygi Heidarlou H, Oprea-Sorescu O, Marcu MV, Borz SA. Mapping Small-Scale Willow Crops and Their Health Status Using Sentinel-2 Images in Complex Agricultural Areas. Remote Sensing. 2024; 16(3):595. https://doi.org/10.3390/rs16030595
Chicago/Turabian StyleBeygi Heidarlou, Hadi, Octavian Oprea-Sorescu, Marina Viorela Marcu, and Stelian Alexandru Borz. 2024. "Mapping Small-Scale Willow Crops and Their Health Status Using Sentinel-2 Images in Complex Agricultural Areas" Remote Sensing 16, no. 3: 595. https://doi.org/10.3390/rs16030595
APA StyleBeygi Heidarlou, H., Oprea-Sorescu, O., Marcu, M. V., & Borz, S. A. (2024). Mapping Small-Scale Willow Crops and Their Health Status Using Sentinel-2 Images in Complex Agricultural Areas. Remote Sensing, 16(3), 595. https://doi.org/10.3390/rs16030595