A Novel Automatic Registration Method for Array InSAR Point Clouds in Urban Scenes
Abstract
:1. Introduction
- An analysis was conducted on the height errors in airborne array InSAR point clouds caused by local incidence angle variations, followed by their subsequent correction.
- The KAZE algorithm was introduced into the point cloud registration problem, and a method for selecting robust feature points was proposed to address the registration of array InSAR point clouds.
2. Methods
2.1. Flattened Phase Error Correction
2.2. Obtain Matching Points with KAZE
2.2.1. Generate Grayscale Image
2.2.2. Feature Point Extraction
- Constructing Nonlinear Scale Space:
- 2.
- Feature point detection:
- 3.
- Feature descriptor:
2.2.3. Feature Matching Method
2.3. Calculate 3D Transformations
3. Results
3.1. Experimental Data
3.2. Evaluation Criterion
3.3. Experimental Results
3.4. Time Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Mizukami, Y.; Tada, M.; Matsuno, F. Navigation of a mobile robot in a dynamic environment using a point cloud map. Artif. Life Robot. 2021, 26, 10–20. [Google Scholar] [CrossRef]
- Chen, S.; Liu, B.; Feng, C.; Vallespi-Gonzalez, C.; Wellington, C. 3d point cloud processing and learning for autonomous driving: Impacting map creation, localization, and perception. IEEE Signal Process. Mag. 2020, 38, 68–86. [Google Scholar] [CrossRef]
- Fuhrmann, S.; Langguth, F.; Goesele, M. Mve-a multi-view reconstruction environment. GCH 2014, 3, 4. [Google Scholar]
- Blanc, T.; El Beheiry, M.; Caporal, C.; Masson, J.-B.; Hajj, B. Genuage: Visualize and analyze multidimensional single-molecule point cloud data in virtual reality. Nat. Methods 2020, 17, 1100–1102. [Google Scholar] [CrossRef]
- Dong, Z.; Liang, F.; Yang, B.; Xu, Y.; Zang, Y.; Li, J.; Wang, Y.; Dai, W.; Fan, H.; Hyyppä, J. Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 163, 327–342. [Google Scholar] [CrossRef]
- Pu, S.; Vosselman, G. Knowledge based reconstruction of building models from terrestrial laser scanning data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 575–584. [Google Scholar] [CrossRef]
- Barazzetti, L.; Scaioni, M.; Remondino, F. Orientation and 3D modelling from markerless terrestrial images: Combining accuracy with automation. Photogramm. Rec. 2010, 25, 356–381. [Google Scholar] [CrossRef]
- Simon, L.; Teboul, O.; Koutsourakis, P.; Van Gool, L.; Paragios, N. Parameter-free/pareto-driven procedural 3d reconstruction of buildings from ground-level sequences. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 518–525. [Google Scholar]
- Zhu, X.X.; Bamler, R. Tomographic SAR inversion by L1-norm regularization—The compressive sensing approach. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3839–3846. [Google Scholar] [CrossRef]
- Zeng, Z.; Sun, J.; Han, Z.; Hong, W. SAR automatic target recognition method based on multi-stream complex-valued networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Gernhardt, S.; Cong, X.; Eineder, M.; Hinz, S.; Bamler, R. Geometrical fusion of multitrack PS point clouds. IEEE Geosci. Remote Sens. Lett. 2011, 9, 38–42. [Google Scholar] [CrossRef]
- Hu, F.; Wang, F.; Ren, Y.; Xu, F.; Qiu, X.; Ding, C.; Jin, Y. Error analysis and 3D reconstruction using airborne array InSAR images. ISPRS J. Photogramm. Remote Sens. 2022, 190, 113–128. [Google Scholar] [CrossRef]
- Ge, X.; Hu, H.; Wu, B. Image-guided registration of unordered terrestrial laser scanning point clouds for urban scenes. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9264–9276. [Google Scholar] [CrossRef]
- Barnea, S.; Filin, S. Registration of terrestrial laser scans via image based features. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2007, 36, 32–37. [Google Scholar]
- Aiger, D.; Mitra, N.J.; Cohen-Or, D. 4-points congruent sets for robust pairwise surface registration. ACM Trans. Graph. 2008, 27, 1–10. [Google Scholar] [CrossRef]
- Jaw, J.J.; Chuang, T.Y. Registration of ground-based LiDAR point clouds by means of 3D line features. J. Chin. Inst. Eng. 2008, 31, 1031–1045. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, Y.; Tong, L.; Chen, Y.; Li, M. Hierarchical registration method for airborne and vehicle lidar point cloud. Remote Sens. 2015, 7, 13921–13944. [Google Scholar] [CrossRef]
- Lee, J.; Yu, K.; Kim, Y.; Habib, A.F. Adjustment of discrepancies between LIDAR data strips using linear features. IEEE Geosci. Remote Sens. Lett. 2007, 4, 475–479. [Google Scholar] [CrossRef]
- Gruen, A.; Akca, D. Least squares 3D surface and curve matching. ISPRS J. Photogramm. Remote Sens. 2005, 59, 151–174. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Proceedings of the Sensor Fusion IV: Control Paradigms and Data Structures, Boston, MA, USA, 12–15 November 1992; pp. 586–606. [Google Scholar]
- Al-Durgham, K.; Habib, A.; Kwak, E. RANSAC approach for automated registration of terrestrial laser scans using linear features. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci 2013, 2, 13–18. [Google Scholar] [CrossRef]
- Takeuchi, E.; Tsubouchi, T. A 3-D scan matching using improved 3-D normal distributions transform for mobile robotic mapping. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–13 October 2006; pp. 3068–3073. [Google Scholar]
- Fusiello, A.; Castellani, U.; Ronchetti, L.; Murino, V. Model acquisition by registration of multiple acoustic range views. In Proceedings of the Computer Vision—ECCV 2002: 7th European Conference on Computer Vision, Copenhagen, Denmark, 28–31 May 2002; pp. 805–819. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv 2017, arXiv:1706.02413. [Google Scholar]
- Deng, H.; Birdal, T.; Ilic, S. 3D local features for direct pairwise registration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3244–3253. [Google Scholar]
- Yang, J.; Zhao, C.; Xian, K.; Zhu, A.; Cao, Z. Learning to fuse local geometric features for 3D rigid data matching. Inf. Fusion 2020, 61, 24–35. [Google Scholar] [CrossRef]
- Valsesia, D.; Fracastoro, G.; Magli, E. Learning localized representations of point clouds with graph-convolutional generative adversarial networks. IEEE Trans. Multimed. 2020, 23, 402–414. [Google Scholar] [CrossRef]
- Huang, X.; Mei, G.; Zhang, J. Feature-metric registration: A fast semi-supervised approach for robust point cloud registration without correspondences. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11366–11374. [Google Scholar]
- Wang, Y.; Zhu, X.X. Automatic feature-based geometric fusion of multiview TomoSAR point clouds in urban area. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 953–965. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, X.; Liu, S.; Ye, Z.; Feng, Y.; Xie, H.; Chen, L.; Zhang, F.; Han, J.; Jin, Y. Automatic Registration of Very Low Overlapping Array InSAR Point Clouds in Urban Scenes. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–25. [Google Scholar] [CrossRef]
- Cheng, R.; Liang, X.; Zhang, F.; Guo, Q.; Chen, L. Multiple-bounce scattering of Tomo-SAR in single-pass mode for building reconstructions. IEEE Access 2019, 7, 124341–124350. [Google Scholar] [CrossRef]
- Alcantarilla, P.F.; Bartoli, A.; Davison, A.J. KAZE features. In Proceedings of the Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 214–227. [Google Scholar]
- Chen, C.; Guo, J.; Wu, H.; Li, Y.; Shi, B. Performance comparison of filtering algorithms for high-density airborne LiDAR point clouds over complex LandScapes. Remote Sens. 2021, 13, 2663. [Google Scholar] [CrossRef]
- Pingel, T.J.; Clarke, K.C.; McBride, W.A. An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS J. Photogramm. Remote Sens. 2013, 77, 21–30. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, S.-C.; Whitman, D.; Shyu, M.-L.; Yan, J.; Zhang, C. A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 872–882. [Google Scholar] [CrossRef]
- Zhang, X.; Jian, L.; Xu, M. Robust 3D point cloud registration based on bidirectional Maximum Correntropy Criterion. PLoS ONE 2018, 13, e0197542. [Google Scholar] [CrossRef]
H/(m) | λ/(cm) | h/(m) | B/(m) | θP/(°) |
---|---|---|---|---|
4000 | 2 | 100 | 2 | 20–45 |
H/(m) | Band | α/(°) | B/(m) | Sa/(m) | Sr/(m) | Sh/(m) |
---|---|---|---|---|---|---|
4500 | Ku | 0 | 1.986 | 0.237 | 0.1875 | 1.357 |
Method | RMSE (m) | Correntropy | Mean (deg) | Time (s) |
---|---|---|---|---|
ICP | 5.3275 | 0.1074 | 0.5372 | 74.56183 |
[25] | 4.0469 | 0.2282 | 0.4263 | 250.6351 |
Proposed | 1.4773 | 0.2640 | 0.4292 | 3.8633 |
Method | RMSE (m) | Correntropy | Mean θ (deg) | Time (s) |
---|---|---|---|---|
ICP | 8.357 | 0.0725 | 0.9382 | 453.3789 |
[31] | 5.863 | 0.0910 | 0.3873 | 120.3572 |
Proposed | 1.035 | 0.2239 | 0.3892 | 16.8694 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, C.; Liu, Y.; Zhang, F.; Shi, M.; Chen, L.; Li, W.; Li, Z. A Novel Automatic Registration Method for Array InSAR Point Clouds in Urban Scenes. Remote Sens. 2024, 16, 601. https://doi.org/10.3390/rs16030601
Cui C, Liu Y, Zhang F, Shi M, Chen L, Li W, Li Z. A Novel Automatic Registration Method for Array InSAR Point Clouds in Urban Scenes. Remote Sensing. 2024; 16(3):601. https://doi.org/10.3390/rs16030601
Chicago/Turabian StyleCui, Chenghao, Yuling Liu, Fubo Zhang, Minan Shi, Longyong Chen, Wenjie Li, and Zhenhua Li. 2024. "A Novel Automatic Registration Method for Array InSAR Point Clouds in Urban Scenes" Remote Sensing 16, no. 3: 601. https://doi.org/10.3390/rs16030601
APA StyleCui, C., Liu, Y., Zhang, F., Shi, M., Chen, L., Li, W., & Li, Z. (2024). A Novel Automatic Registration Method for Array InSAR Point Clouds in Urban Scenes. Remote Sensing, 16(3), 601. https://doi.org/10.3390/rs16030601