Assessing Satellite-Derived Shoreline Detection on a Mesotidal Dissipative Beach
Abstract
:1. Introduction
2. Methods
2.1. Study Site
2.2. Oceanographic and Morphological Conditions
2.3. Video-Derived Waterlines
2.4. Detection of the Waterline from Satellite Imagery
- Image downloading. The S2 images with a cloud coverage below 30% were downloaded via the Copernicus Open Access Hub (https://scihub.copernicus.eu/, accessed on 1 August 2023). Top-Of Atmosphere (TOA) images were employed as the atmospherically corrected images (Bottom-of-Atmosphere, BOA) did not provide significant improvements in the SDWL accuracy in previous tests [18].
- Water/land interface segmentation. The WL was characterised by the limit of the water mask. This mask was defined employing different water indexes, thresholding methods, and morphological filters to assess their effect on the positioning of the resulting APS and, subsequently, the subpixel waterline (see pink squares in Figure 5). For each image, the two water indices were computed, AWEInsh (Equation (1), as originally described by Feyisa et al. [17] and the MNDWI (Equation (2), described by Xu [16]), being subsequently binarised using both a constant threshold = 0 and the thresholding method by Otsu [21], and finally defined the continuous sets of pixels that constitute the limit of the water mask (i.e., the water/land interface) by applying the morphological filters of dilation and erosion (that would displace it landward/seawards, respectively).AWEInsh = 4·(G − SWIR1) − (0.25·NIR + 2.75·SWIR2)MNDWI = (G − SWIR1)/(G + SWIR1)
- Water–land mask refinement. Considering the water/land interface of the water mask as input, the APS was defined after removing pixels classified as clouds according to the cloud classification bands provided by the image servers.
- Sub-pixel extraction. Following the pixels defined by the APS, the waterline was identified at the subpixel level. For this purpose, a kernel analysis of two different sizes (3 × 3 and 5 × 5 pixels; see emerald squares in Figure 5) was performed on the SWIR1 band. The sub-pixel location was defined by the points (every 5 m) where the reflectance values show the highest gradient edge. This step was accomplished by employing the algorithm described in Pardo-Pascual et al. [14]. To finish the process, the minimum spanning tree method [39] was applied to remove outliers and obtain the final SDWL as proposed by Sánchez-García et al. [11].
2.5. Accuracy Assessment
3. Results
4. Discussion
4.1. Extraction Parameters and Coastal Conditions Affect SDWL Accuracy
4.2. The Uncertainty in the Waterline Definition in Dissipative Coastal Environments
4.3. From SDWL to SDS
4.4. Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boak, E.H.; Turner, I.L. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 214, 688–703. [Google Scholar] [CrossRef]
- Castelle, B.; Ritz, A.; Marieu, V.; Lerma, A.N.; Vandenhove, M. Primary drivers of multidecadal spatial and temporal patterns of shoreline change derived from optical satellite imagery. Geomorphology 2022, 413, 108360. [Google Scholar] [CrossRef]
- Vos, K.; Harley, M.D.; Turner, I.L.; Splinter, K.D. Pacific shoreline erosion and accretion patterns controlled by El Niño/Southern Oscillation. Nat. Geosci. 2023, 16, 140–146. [Google Scholar] [CrossRef]
- Calkoen, F.; Luijendijk, A.; Rivero, C.R.; Kras, E.; Baart, F. Traditional vs. Machine-Learning Methods for Forecasting Sandy Shoreline Evolution Using Historic Satellite-Derived Shorelines. Remote Sens. 2021, 13, 934. [Google Scholar] [CrossRef]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.; Almonacid-Caballer, J.; Rodilla, M. Detecting problematic beach widths for the recreational function along the Gulf of Valencia (Spain) from Landsat 8 subpixel shorelines. Appl. Geogr. 2019, 110, 102047. [Google Scholar] [CrossRef]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.E.; Palomar-Vázquez, J.; Fernández-Sarría, A. Characterizing beach changes using high-frequency Sentinel-2 derived shorelines on the Valencian coast (Spanish Mediterranean). Sci. Total Environ. 2019, 691, 216–231. [Google Scholar] [CrossRef]
- Molina, R.; Anfuso, G.; Manno, G.; Gracia Prieto, F.J. The Mediterranean Coast of Andalusia (Spain): Medium-Term Evolution and Impacts of Coastal Structures. Sustainability 2019, 11, 3539. [Google Scholar] [CrossRef]
- Laksono, F.A.T.; Borzi, L.; Distefano, S.; Czirok, L.; Halmai, Á.; Di Stefano, A.; Kovács, J. Shoreline change dynamics along the Augusta coast, eastern Sicily, South Italy. Earth Surf. Process. Landf. 2023, 48, 2630–2641. [Google Scholar] [CrossRef]
- Vitousek, S.; Buscombe, D.; Vos, K.; Barnard, P.L.; Ritchie, A.C.; Warrick, J.A. The future of coastal monitoring through satellite remote sensing. Camb. Prism. Coast. Futures 2023, 1, e10. [Google Scholar] [CrossRef]
- Vos, K.; Splinter, K.D.; Harley, M.D.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environ. Model. Softw. 2019, 122, 104528. [Google Scholar] [CrossRef]
- Sánchez-García, E.; Palomar-Vázquez, J.; Pardo-Pascual, J.; Almonacid-Caballer, J.; Cabezas-Rabadán, C.; Gómez-Pujol, L. An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery. Coast. Eng. 2020, 160, 103732. [Google Scholar] [CrossRef]
- Almeida, L.P.; de Oliveira, I.E.; Lyra, R.; Dazzi, R.L.S.; Martins, V.G.; da Fontoura Klein, A.H. Coastal analyst sys-tem from space imagery engine (CASSIE): Shoreline management module. Environ. Model. Softw. 2021, 140, 105033. [Google Scholar] [CrossRef]
- Vos, K.; Splinter, K.D.; Palomar-Vázquez, J.; Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Cabezas-Rabadán, C.; Kras, E.C.; Luijendijk, A.P.; Calkoen, F.; Almeida, L.P.; et al. Benchmarking satellite-derived shoreline mapping algorithms. Commun. Earth Environ. 2023, 4, 345. [Google Scholar] [CrossRef]
- Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Ruiz, L.A.; Palomar-Vázquez, J. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sens. Environ. 2012, 123, 1–11. [Google Scholar] [CrossRef]
- Palomar-Vázquez, J.; Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Cabezas-Rabadán, C. Shoreline Analysis and Extraction Tool (SAET): A New Tool for the Automatic Extraction of Satellite-Derived Shorelines with Subpixel Accuracy. Remote Sens. 2023, 15, 3198. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Cabezas-Rabadán, C.; Fernández-Sarría, A.; Armaroli, C.; Ciavola, P.; Montes, J.; Souto-Ceccon, P.E.; Palomar-Vázquez, J. Assessment of satellite-derived shorelines automatically extracted from Sentinel-2 imagery using SAET. Coast. Eng. 2024, 188, 104426. [Google Scholar] [CrossRef]
- Palomar-Vázquez, J.; Cabezas-Rabadán, C.; Castañeda, C.; Gracia, F.J.; Fernández-Sarría, A.; Priego-De-Los-Santos, E.; Pons-Crespo, R.; Pardo-Pascual, J.E. Inferring volumetric changes at a shallow lake from subpixel satellite-derived shorelines. Appl. Geogr. 2022, 149, 102792. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Sagar, S.; Lymburner, L.; Alam, I.; Sixsmith, J. Sub-Pixel Waterline Extraction: Characterising Accuracy and Sensitivity to Indices and Spectra. Remote Sens. 2019, 11, 2984. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Hagenaars, G.; de Vries, S.; Luijendijk, A.P.; de Boer, W.P.; Reniers, A.J. On the accuracy of automated shoreline detection derived from satellite imagery: A case study of the sand motor mega-scale nourishment. Coast. Eng. 2018, 133, 113–125. [Google Scholar] [CrossRef]
- McAllister, E.; Payo, A.; Novellino, A.; Dolphin, T.; Medina-Lopez, E. Multispectral satellite imagery and machine learning for the extraction of shoreline indicators. Coast. Eng. 2022, 174, 104102. [Google Scholar] [CrossRef]
- Haralick, R.M.; Sternberg, S.R.; Zhuang, X. Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 1987, PAMI-9, 532–550. [Google Scholar] [CrossRef]
- Vitousek, S.; Vos, K.; Splinter, K.D.; Erikson, L.; Barnard, P.L. A model integrating satellite-derived shoreline observations for predicting fine-scale shoreline response to waves and sea-level rise across large coastal regions. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF006936. [Google Scholar] [CrossRef]
- Vos, K.; Harley, M.D.; Splinter, K.D.; Simmons, J.A.; Turner, I.L. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coast. Eng. 2019, 150, 160–174. [Google Scholar] [CrossRef]
- Almonacid-Caballer, J.; Pardo-Pascual, J.E.; Ruiz, L.A. Evaluating Fourier Cross-Correlation Sub-Pixel Registration in Landsat Images. Remote Sens. 2017, 9, 1051. [Google Scholar] [CrossRef]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.E.; Palomar-Vázquez, J.; Ferreira, Ó.; Costas, S. Satellite Derived Shorelines at an Exposed Meso-tidal Beach. J. Coast. Res. 2020, 95, 1027–1031. [Google Scholar] [CrossRef]
- Castelle, B.; Masselink, G.; Scott, T.; Stokes, C.; Konstantinou, A.; Marieu, V.; Bujan, S. Satellite-derived shoreline detection at a high-energy meso-macrotidal beach. Geomorphology 2021, 383, 107707. [Google Scholar] [CrossRef]
- Konstantinou, A.; Scott, T.; Masselink, G.; Stokes, K.; Conley, D.; Castelle, B. Satellite-based shoreline detection along high-energy macrotidal coasts and influence of beach state. Mar. Geol. 2023, 462, 107082. [Google Scholar] [CrossRef]
- Gracia, F.; Rodriguezvidal, J.; Cáceres, L.; Belluomini, G.; Benavente, J.; Alonso, C. Diapiric uplift of an MIS 3 marine deposit in SW Spain: Implications for Late Pleistocene sea level reconstruction and palaeogeography of the Strait of Gibraltar. Quat. Sci. Rev. 2008, 27, 2219–2231. [Google Scholar] [CrossRef]
- Muñoz-Perez, J.J.; Medina, R. Comparison of long-, medium-and short-term variations of beach profiles with and without submerged geological control. Coast. Eng. 2010, 57, 241–251. [Google Scholar] [CrossRef]
- Puig, M. Análisis de las Variables que Controlan la Evolución de la Costa a Corto-Medio Plazo. Aplicación a la Bahía de Cádiz. Ph.D. Thesis, University of Cádiz, Cádiz, Spain, 2016. [Google Scholar]
- Montes, J.; Simarro, G.; Benavente, J.; Plomaritis, T.A.; Del Río, L. Morphodynamics Assessment by Means of Mesoforms and Video-Monitoring in a Dissipative Beach. Geosciences 2018, 8, 448. [Google Scholar] [CrossRef]
- Montes, J.; del Río, L.; Plomaritis, T.A.; Benavente, J.; Puig, M.; Simarro, G. Video-Monitoring Tools for Assessing Beach Morphodynamics in Tidal Beaches. Remote Sens. 2023, 15, 2650. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ferreira, P.M.; Almeida, L.P.; Dodet, G.; Andriolo, U.; Psaros, F.; Taborda, R.; Silva, A.N.; Ruano, A.E.; Ferreira, Ó. Performance of intertidal topography video monitoring of a meso-tidal reflective beach in South Portugal. Ocean Dyn. 2011, 61, 1521–1540. [Google Scholar] [CrossRef]
- Sánchez-García, E.; Balaguer-Beser, A.; Pardo-Pascual, J.E. C-Pro: A coastal projector monitoring system using terrestrial photogrammetry with a geometric horizon constraint. ISPRS J. Photogramm. Remote Sens. 2017, 128, 255–273. [Google Scholar] [CrossRef]
- Simarro, G.; Ribas, F.; Álvarez, A.; Guillén, J.; Chic, Ò.; Orfila, A. ULISES: An open-source code for extrinsic calibrations and planview generations in coastal video monitoring systems. J. Coast. Res. 2017, 33, 1217–1227. [Google Scholar] [CrossRef]
- Graham, R.; Hell, P. On the History of the Minimum Spanning Tree Problem. IEEE Ann. Hist. Comput. 1985, 7, 43–57. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H., Jr. Empirical Parameterization of Setup, Swash, and Runup. Coast. Eng. 2006, 53, 573–588. Available online: https://www.sciencedirect.com/science/article/pii/S0378383906000044?via%3Dihub (accessed on 10 January 2023). [CrossRef]
- Benavente, J.; Plomaritis, T.A.; del Río, L.; Puig, M.; Valenzuela, C.; Minuzzi, B. Differential short- and medium-term behavior of two sections of an urban beach. J. Coast. Res. 2014, 70, 621–626. [Google Scholar] [CrossRef]
- Graffin, M.; Taherkhani, M.; Leung, M.; Vitousek, S.F.; Kaminsky, G.; Ruggiero, P. Monitoring interdecadal coastal change along dissipative beaches via satellite imagery at regional scale. Camb. Prism. Coast. Futures 2023, 1, e42. [Google Scholar] [CrossRef]
- Mao, Y.; Harris, D.L.; Xie, Z.; Phinn, S. Efficient measurement of large-scale decadal shoreline change with increased accuracy in tide-dominated coastal environments with Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 181, 385–399. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641, Correction in 2018, 8, 11381. [Google Scholar] [CrossRef]
- Pardo-Pascual, J.E.; Sánchez-García, E.; Almonacid-Caballer, J.; Palomar-Vázquez, J.M.; Priego de los Santos, E.; Fernández-Sarría, A.; Balaguer-Beser, Á. Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery. Remote Sens. 2018, 10, 326. [Google Scholar] [CrossRef]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.E.; Palomar-Vázquez, J.; Roch-Talens, A.; Guillén, J. Satellite observations of storm erosion and recovery of the Ebro Delta coastline, NE Spain. Coast. Eng. 2024, 188, 104451. [Google Scholar] [CrossRef]
Date (DD-MM-YY) | SL (m) acquisit. Time −1 h | SL (m) 11:15 GMT | SL (m) acquisit. Time +1 h | Tidal State | Hs (m) | Mean Period (s) | Tp (s) |
---|---|---|---|---|---|---|---|
17-01-18 | −0.847 | −0.357 | 0.183 | rising | 0.56 | 7.82 | 14.01 |
22-01-18 | −0.967 | −1.087 | −0.997 | low | 0.31 | 4.18 | 3.81 |
27-01-18 | 0.863 | 0.783 | 0.523 | falling | 0.53 | 5.78 | 4.64 |
11-02-18 | 0.403 | 0.603 | 0.603 | high | 0.41 | 6.05 | 4.03 |
16-02-18 | −0.947 | −0.437 | 0.163 | rising | 0.71 | 9.17 | 14.48 |
21-02-18 | −1.087 | −0.977 | −0.917 | low | 0.6 | 9.89 | 11.23 |
28-03-18 | 0.563 | 0.993 | 1.173 | rising | 0.43 | 7.19 | 9.32 |
17-04-18 | −1.247 | −0.797 | −0.187 | rising | 0.68 | 7.82 | 10.02 |
27-04-18 | 0.323 | 0.943 | 1.333 | rising | 0.35 | 5.23 | 4.23 |
17-05-18 | −1.177 | −0.737 | −0.107 | rising | 0.25 | 3.71 | 3.49 |
22-05-18 | 0.643 | 0.283 | −0.107 | falling | 0.34 | 3.83 | 3.76 |
06-06-18 | 0.193 | −0.077 | −0.327 | falling | 0.69 | 4.92 | 8.33 |
16-06-18 | −1.247 | −0.977 | −0.557 | rising | 0.5 | 5.03 | 4.45 |
26-06-18 | 0.003 | 0.503 | 0.953 | rising | 0.45 | 4.2 | 4.24 |
16-07-18 | −1.237 | −1.207 | −0.867 | low | 0.48 | 3.88 | 4.21 |
21-07-18 | 0.803 | 0.603 | 0.283 | falling | 0.48 | 3.82 | 4.21 |
09-10-18 | −0.507 | 0.143 | 0.903 | rising | 0.51 | 8.98 | 11.16 |
23-12-18 | −0.957 | −0.357 | 0.393 | rising | 0.97 | 5.79 | 12.11 |
28-12-18 | −0.257 | −0.777 | −0.987 | falling | 0.5 | 5.11 | 7.52 |
Error (m) | Snap_P1 | Snap_P2 | Timex_P2 |
---|---|---|---|
Mean ± SD | −0.49 ± 1.14 | 0.73 ± 1.69 | 1.01 ± 1.58 |
RMSE | 1.51 | 2.31 | 2.23 |
Combination | Extraction Parameters | Bias (m) | SD (m) | RMSE (m) |
---|---|---|---|---|
1 | 3 × 3, Erosion, AWEInsh, 0 | 2.70 | 2.28 | 5.96 |
2 | 3 × 3, Erosion, AWEInsh, Otsu | −4.39 | 2.51 | 7.64 |
3 | 3 × 3, Erosion, MNDWI, 0 | −3.15 | 2.40 | 6.65 |
4 | 3 × 3, Erosion, MNDWI, Otsu | 0.82 | 2.42 | 7.22 |
5 | 3 × 3, Dilation, AWEInsh, 0 | −8.76 | 2.22 | 9.34 |
6 | 3 × 3, Dilation, AWEInsh, Otsu | −17.16 | 2.87 | 17.48 |
7 | 3 × 3, Dilation, MNDWI, 0 | −15.44 | 2.67 | 15.74 |
8 | 3 × 3, Dilation, MNDWI, Otsu | −10.92 | 2.57 | 11.95 |
9 | 5 × 5, Erosion, AWEInsh, 0 | −10.30 | 5.34 | 12.39 |
10 | 5 × 5, Erosion, AWEInsh, Otsu | −14.09 | 2.77 | 14.60 |
11 | 5 × 5, Erosion, MNDWI, 0 | −13.64 | 2.95 | 14.26 |
12 | 5 × 5, Erosion, MNDWI, Otsu | −13.59 | 3.43 | 14.57 |
13 | 5 × 5, Dilation, AWEInsh, 0 | −14.58 | 2.51 | 14.92 |
14 | 5 × 5, Dilation, AWEInsh, Otsu | −17.67 | 2.79 | 18.00 |
15 | 5 × 5, Dilation, MNDWI, 0 | −17.20 | 2.71 | 17.53 |
16 | 5 × 5, Dilation, MNDWI, Otsu | −15.10 | 2.58 | 15.52 |
Index | Thresholding | Morph. Operation | Kernel Size | |||||
---|---|---|---|---|---|---|---|---|
Error (m) | AWEInsh | MNDWI | 0 | Otsu | Erosion | Dilation | 3 × 3 | 5 × 5 |
SD | 2.91 | 2.72 | 2.89 | 2.74 | 3.01 | 2.62 | 2.49 | 3.14 |
RMSE | 10.91 | 13.99 | 13.06 | 12.10 | 10.49 | 14.35 | 10.00 | 14.78 |
Combination | Bias | SD | RMSE |
---|---|---|---|
1 | 0.097 | 0.002 | 0.005 |
2 | 0.396 | 0.039 | 0.549 |
3 | 0.217 | 0.136 | 0.341 |
4 | 0.085 | 0.010 | 0.178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabezas-Rabadán, C.; Almonacid-Caballer, J.; Benavente, J.; Castelle, B.; Del Río, L.; Montes, J.; Palomar-Vázquez, J.; Pardo-Pascual, J.E. Assessing Satellite-Derived Shoreline Detection on a Mesotidal Dissipative Beach. Remote Sens. 2024, 16, 617. https://doi.org/10.3390/rs16040617
Cabezas-Rabadán C, Almonacid-Caballer J, Benavente J, Castelle B, Del Río L, Montes J, Palomar-Vázquez J, Pardo-Pascual JE. Assessing Satellite-Derived Shoreline Detection on a Mesotidal Dissipative Beach. Remote Sensing. 2024; 16(4):617. https://doi.org/10.3390/rs16040617
Chicago/Turabian StyleCabezas-Rabadán, Carlos, Jaime Almonacid-Caballer, Javier Benavente, Bruno Castelle, Laura Del Río, Juan Montes, Jesús Palomar-Vázquez, and Josep E. Pardo-Pascual. 2024. "Assessing Satellite-Derived Shoreline Detection on a Mesotidal Dissipative Beach" Remote Sensing 16, no. 4: 617. https://doi.org/10.3390/rs16040617
APA StyleCabezas-Rabadán, C., Almonacid-Caballer, J., Benavente, J., Castelle, B., Del Río, L., Montes, J., Palomar-Vázquez, J., & Pardo-Pascual, J. E. (2024). Assessing Satellite-Derived Shoreline Detection on a Mesotidal Dissipative Beach. Remote Sensing, 16(4), 617. https://doi.org/10.3390/rs16040617