Response of Vegetation to Drought in the Source Region of the Yangtze and Yellow Rivers Based on Causal Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Meteorological Data
2.2.2. Soil Data
2.2.3. Vegetation Data
2.2.4. Land Cover Data
2.3. Methods
2.3.1. Division Method of Permafrost Degradation Zone
2.3.2. Calculation of VPD
2.3.3. Sen–Mann–Kendall
2.3.4. Peter–Clark Momentary Conditional Independence (PCMCI)
3. Results
3.1. Evolution of Drought and Vegetation in the SRYY
3.1.1. The Evolution Characteristics of VPD and SM
3.1.2. Evolution Characteristics of NDVI and SIF
3.2. Interaction Mechanism between Drought and Vegetation Based on Causal Analysis
3.2.1. Effects of Drought and Vegetation on the SRYY
3.2.2. The Lag Time between Drought and Vegetation in the SRYY
3.3. Response Mechanism of Vegetation to Drought
3.3.1. Responses of Different Vegetation Types to Drought
3.3.2. Response Mechanism of Vegetation to Drought in Permafrost Degradation Area
4. Discussion
4.1. Drought Evolution Law in the SRYY
4.2. Comparison of NDVI and SIF Performance Differences in SRYY
4.3. Effects of Drought on Vegetation in the SRYY
4.4. The Response of Vegetation to Drought in Different Vegetation Types and Permafrost Degradation Areas
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation
SRYY | The source region of the Yangtze River and the Yellow River |
SRYA | The source region of the Yangtze River |
SRY | The source region of the Yellow River |
PCMCI | Peter–Clark Momentary Conditional Independence |
VPD | Vapor pressure deficit |
SM | Soil moisture |
NDVI | Normalized Differential Vegetation Index |
SIF | Solar-induced fluorescence |
References
- Ma, H.; Cui, T.; Cao, L. Monitoring of Drought Stress in Chinese Forests Based on Satellite Solar-Induced Chlorophyll Fluorescence and Multi-Source Remote Sensing Indices. Remote Sens. 2023, 15, 879. [Google Scholar] [CrossRef]
- Yao, T.; Bolch, T.; Chen, D.; Gao, J.; Immerzeel, W.; Piao, S.; Su, F.; Thompson, L.; Wada, Y.; Wang, T.; et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 2022, 3, 618–632. [Google Scholar] [CrossRef]
- Cao, J.; An, Q.; Zhang, X.; Xu, S.; Si, T.; Niyogi, D. Is satellite Sun-Induced Chlorophyll Fluorescence more indicative than vegetation indices under drought condition? Sci. Total Environ. 2021, 792, 148396. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, L.; Shao, J.; Zhou, X. Effects of extreme drought on terrestrial ecosystems: Review and prospects. Chin. J. Plant Ecol. 2020, 44, 515–525. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Mack, M.C. Ecological Response to Permafrost Thaw and Consequences for Local and Global Ecosystem Services. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 279–301. [Google Scholar] [CrossRef]
- Anniwaer, N.; Li, X.; Wang, K.; Xu, H.; Hong, S. Shifts in the trends of vegetation greenness and photosynthesis in different parts of Tibetan Plateau over the past two decades. Agric. For. Meteorol. 2024, 345, 109851. [Google Scholar] [CrossRef]
- Rousta, I.; Olafsson, H.; Moniruzzaman, M.; Zhang, H.; Liou, Y.-A.; Mushore, T.D.; Gupta, A. Impacts of Drought on Vegetation Assessed by Vegetation Indices and Meteorological Factors in Afghanistan. Remote Sens. 2020, 12, 2433. [Google Scholar] [CrossRef]
- Lin, Q.; Wu, Z.; Zhang, Y.; Peng, T.; Chang, W.; Guo, J. Propagation from meteorological to hydrological drought and its application to drought prediction in the Xijiang River basin, South China. J. Hydrol. 2023, 617, 128889. [Google Scholar] [CrossRef]
- Yan, W.; Yang, F.; Zhou, J.; Wu, R. Droughts force temporal change and spatial migration of vegetation phenology in the northern Hemisphere. Agric. For. Meteorol. 2023, 341, 109685. [Google Scholar] [CrossRef]
- Sun, P.; Liu, R.; Yao, R.; Shen, H.; Bian, Y. Responses of agricultural drought to meteorological drought under different climatic zones and vegetation types. J. Hydrol. 2023, 619, 129305. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, H.; Ding, M.; Li, L.; Zhang, Y. The Multiple Perspective Response of Vegetation to Drought on the Qinghai-Tibetan Plateau. Remote Sens. 2023, 15, 902. [Google Scholar] [CrossRef]
- Stefanidis, S.; Rossiou, D.; Proutsos, N. Drought severity and trends in a Mediterranean oak forest. Hydrology 2023, 10, 167. [Google Scholar] [CrossRef]
- Le, T.S.; Harper, R.; Dell, B. Application of Remote Sensing in Detecting and Monitoring Water Stress in Forests. Remote Sens. 2023, 15, 3360. [Google Scholar] [CrossRef]
- Liu, L.; Yang, X.; Zhou, H.; Liu, S.; Zhou, L.; Li, X.; Yang, J.; Han, X.; Wu, J. Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy. Sci. Total Environ. 2018, 625, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gonsamo, A.; Tong, X. Solar-induced chlorophyll fluorescence captures photosynthetic phenology better than traditional vegetation indices. ISPRS J. Photogramm. Remote Sens. 2023, 203, 183–198. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, L.; McCabe, M.F. Multi-sensor remote sensing for drought characterization: Current status, opportunities and a roadmap for the future. Remote Sens. Environ. 2021, 256, 112313. [Google Scholar] [CrossRef]
- Chen, J.; Yang, H.; Jin, T.; Wu, K. Assessment of terrestrial ecosystem sensitivity to climate change in arid, semi-arid, sub-humid, and humid regions using EVI, LAI, and SIF products. Ecol. Indic. 2024, 158, 111511. [Google Scholar] [CrossRef]
- Du, R.; Wu, J.; Tian, F.; Yang, J.; Han, X.; Chen, M.; Zhao, B.; Lin, J. Reversal of soil moisture constraint on vegetation growth in North China. Sci. Total Environ. 2023, 865, 161246. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Chen, Y.; Fan, M.; Gang, C.; You, Y.; Wang, Z. Dynamics of global dryland vegetation were more sensitive to soil moisture: Evidence from multiple vegetation indices. Agric. For. Meteorol. 2023, 331, 109327. [Google Scholar] [CrossRef]
- Zeng, J.; Zhou, T.; Qu, Y.; Bento, V.A.; Qi, J.; Xu, Y.; Li, Y.; Wang, Q. An improved global vegetation health index dataset in detecting vegetation drought. Sci. Data 2023, 10, 338. [Google Scholar] [CrossRef]
- Zhong, Z.; He, B.; Wang, Y.; Chen, H.; Chen, D.; Fu, Y.; Chen, Y.; Guo, L.; Deng, Y.; Huang, L.; et al. Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity. Sci. Adv. 2023, 9, eadf3166. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Chen, J.; Shirkey, G.; John, R.; Wu, S.R.; Park, H.; Shao, C. Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecol. Process. 2016, 5, 19. [Google Scholar] [CrossRef]
- Degefu, M.A.; Tadesse, Y.; Bewket, W. Spatiotemporal variability and trends of drought episode in southeastern Ethiopia. Phys. Geogr. 2022, 43, 534–561. [Google Scholar] [CrossRef]
- Fu, G.; Zhang, H.; Sun, W. Response of plant production to growing/non-growing season asymmetric warming in an alpine meadow of the Northern Tibetan Plateau. Sci. Total Environ. 2019, 650, 2666–2673. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Yang, X.; Sun, W.; Mu, X.; Gao, P.; Zhao, G. Run-off affected by climate and anthropogenic changes in a large semi-arid river basin. Hydrol. Process. 2020, 34, 1906–1919. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 2019, 11, 517. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, C.; Chen, X.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30? m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Liao, Y.; Li, Y.; Fan, J.; Galoie, M.; Motamedi, A. Spatiotemporal Variations of Freezing and Thawing Indices During the Past Four Decades in Tibet. Front. Ecol. Evol. 2021, 9, 750961. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, S.; Chen, J.; Xiang, N.; Sun, L.; Chen, B.; Fu, Z.; Zhu, K.; He, X. Divergent impacts of VPD and SWC on ecosystem carbon-water coupling under different dryness conditions. Sci. Total Environ. 2023, 905, 167007. [Google Scholar] [CrossRef]
- Yang, H.; Yu, J.; Xu, W.; Wu, Y.; Lei, X.; Ye, J.; Geng, J.; Ding, Z. Long-time series ecological environment quality monitoring and cause analysis in the Dianchi Lake Basin, China. Ecol. Indic. 2023, 148, 110084. [Google Scholar] [CrossRef]
- Gao, B.; Yang, J.; Chen, Z.; Sugihara, G.; Li, M.; Stein, A.; Kwan, M.; Wang, J. Causal inference from cross-sectional earth system data with geographical convergent cross mapping. Nat. Commun. 2023, 14, 5875. [Google Scholar] [CrossRef] [PubMed]
- Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Krich, C.; Runge, J.; Miralles, D.G.; Migliavacca, M.; Perez-Priego, O.; El-Madany, T.; Carrara, A.; Mahecha, M.D. Estimating causal networks in biosphere–atmosphere interaction with the PCMCI approach. Biogeosciences 2020, 17, 1033–1061. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, H.; Xu, T.; Xiao, J.; Guerrieri, R.; Liu, S.; Wu, X.; He, X.; He, X. Physiological and environmental control on ecosystem water use efficiency in response to drought across the northern hemisphere. Sci. Total Environ. 2021, 758, 143599. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, J.L.; Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef]
- He, P.; Han, Z.; He, M.; Meng, X.; Ma, X.; Liu, H.; Dong, T.; Shi, M.; Sun, Z. Atmospheric dryness thresholds of grassland productivity decline in China. J. Environ. Manag. 2023, 338, 117780. [Google Scholar] [CrossRef]
- Zhou, S.; Williams, A.P.; Berg, A.M.; Cook, B.; Zhang, Y.; Hagemann, S.; Lorenz, Z.; Seneviratne, S.; Gentine, P. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl. Acad. Sci. USA 2019, 116, 18848–18853. [Google Scholar] [CrossRef]
- Kovács, D.D.; Amin, E.; Berger, K.; Reyes-Muñoz, P.; Verrelst, J. Untangling the Causal Links between Satellite Vegetation Products and Environmental Drivers on a Global Scale by the Granger Causality Method. Remote Sens. 2023, 15, 4956. [Google Scholar] [CrossRef]
- Gentine, P.; Green, J.; Guerin, M.; Humphrey, V.; Seneviratne, S.I.; Zhang, Y.; Zhou, S. Coupling between the terrestrial carbon and water cycles—A review. Environ. Res. Lett. 2019, 14, 083003. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Xiang, F.; Qin, W.; Jiang, W. Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China. Ecol. Indic. 2020, 110, 105892. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Kerby, J.T.; Phoenix, G.K.; Bjerke, J.W.; Epstein, H.E.; Assmann, J.J.; John, C.; Andreu-Hayles, L.; Angers-Blondin, S.; Wipf, S.; et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Chang. 2020, 10, 106–117. [Google Scholar] [CrossRef]
- Choler, P.; Bayle, A.; Carlson, B.Z.; Randin, C.; Filippa, G.; Cremonese, E. The tempo of greening in the European Alps: Spatial variations on a common theme. Glob. Chang. Biol. 2021, 27, 5614–5628. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhu, S.; Luo, X.; Lou, L.; Li, J.; Luo, S.; Cao, L. Multi-scale hydrological drought characteristics and vegetation responses in the Three-River-Source Region. J. Hohai Univ. 2021, 49, 515–520. (In Chinese) [Google Scholar] [CrossRef]
- Haro-Monteagudo, D.; Daccache, A.; Knox, J. Exploring the utility of drought indicators to assess climate risks to agricultural productivity in a humid climate. Hydrol. Res. 2018, 49, 539–551. [Google Scholar] [CrossRef]
- Wen, R.; Jiang, P.; Qin, M.; Jia, Q.; Cong, N.; Wang, X.; Meng, Y.; Yang, F.; Liu, B.; Zhu, M.; et al. Regulation of NDVI and ET negative responses to increased atmospheric vapor pressure deficit by water availability in global drylands. Front. For. Glob. Chang. 2023, 6, 1164347. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Rossini, M.; Wu, Y.; Zhang, Z.; Zhang, Y. Physiological dynamics dominate the response of canopy far-red solar-induced fluorescence to herbicide treatment. Agric. For. Meteorol. 2022, 323, 109063. [Google Scholar] [CrossRef]
- Lin, J.; Zhou, L.; Wu, J.; Han, X.; Zhao, B.; Chen, M.; Liu, L. Water stress significantly affects the diurnal variation of solar-induced chlorophyll fluorescence (SIF): A case study for winter wheat. Sci. Total Environ. 2024, 908, 168256. [Google Scholar] [CrossRef]
- Humphrey, V.; Zscheischler, J.; Ciais, P.; Gudmundsson, L.; Sitch, S.; Seneviratne, S.I. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 2018, 560, 628–631. [Google Scholar] [CrossRef]
- López, J.; Way, D.A.; Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Glob. Chang. Biol. 2021, 27, 1704–1720. [Google Scholar] [CrossRef]
- Liu, L.; Gudmundsson, L.; Hauser, M.; Qin, D.; Li, S.; Seneviratne, S.I. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 2020, 11, 4892. [Google Scholar] [CrossRef] [PubMed]
- Mottl, O.; Flantua, S.G.; Bhatta, K.P.; Felde, V.A.; Giesecke, T.; Goring, S.; Grimm, C.; Haberle, S.; Hooghiemstra, H.; Williams, J.W.; et al. Global acceleration in rates of vegetation change over the past 18,000 years. Science 2021, 372, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Gong, J.; Wang, S.; Jin, T.; Wang, Y. Shifts bidirectional dependency between vegetation greening and soil moisture over the past four decades in China. Sci. Total Environ. 2023, 897, 166388. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Wei, C.; Yu, Y.; Liu, Y.; Meng, C.; Cai, Y. The dominant influencing factors of desertification changes in the source region of Yellow River: Climate change or human activity? Sci. Total Environ. 2022, 813, 152512. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, H.; Zhu, X.; Yue, Y.; Xue, J.; Shi, L. How permafrost degradation threatens boreal forest growth on its southern margin? Sci. Total Environ. 2021, 762, 143154. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Xin, Q.; Wei, N.; Zhang, Y.; Yuan, H.; Zhang, S.; Liu, S.; Lu, X. A global high-resolution data set of soil hydraulic and thermal properties for land surface modeling. J. Adv. Model. Earth 2019, 11, 2996–3023. [Google Scholar] [CrossRef]
- Fisher, J.P.; Estop-Aragonés, C.; Thierry, A.; Charman, D.J.; Wolfe, S.A.; Hartley, I.P.; Murton, J.B.; Williams, M.; Phoenix, G.K. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Glob. Chang. Biol. 2016, 22, 3127–3140. [Google Scholar] [CrossRef]
- Wang, X.; Chen, G.; Wu, Q.; Cao, L.; Awange, J.; Song, Y.; Wu, M. Spatio-temporal patterns and drivers of carbon–water coupling in frozen soil zones across the gradients of freezing over the Qinghai-Tibet Plateau. J. Hydrol. 2023, 621, 129674. [Google Scholar] [CrossRef]
- Luo, D.L.; Jin, H.J.; He, R.X.; Wang, X.F.; Muskett, R.; Marchenko, S.; Romanovsky, V.E. Characteristics of water-heat exchanges and inconsistent surface temperature changes at an elevational permafrost site on the Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 2018, 123, 10057–10075. [Google Scholar] [CrossRef]
- Luo, S.; Wang, J.; Pomeroy, J.W.; Lyu, S. Freeze–thaw changes of seasonally frozen ground on the Tibetan Plateau from 1960 to 2014. J. Clim. 2020, 33, 9427–9446. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Y.; Guan, Q.; Du, Q.; Zhang, Z.; Zhang, J.; Zhang, E. Exploring future trends of precipitation and runoff in arid regions under different scenarios based on a bias-corrected CMIP6 model. J. Hydrol. 2024, 630, 130666. [Google Scholar] [CrossRef]
- Chang, Y.; Lyu, S.; Luo, S.; Li, Z.; Fang, X.; Chen, B.; Li, R.; Chen, S. Estimation of permafrost on the Tibetan Plateau under current and future climate conditions using the CMIP5 data. Int. J. Climatol. 2018, 38, 5659–5676. [Google Scholar] [CrossRef]
- Xu, M.; Liu, M.; Zhai, D. Effects of experimental warming on the root biomass of an alpine meadow on the Qinghai-Tibetan Plateau, China. Acta Ecol. Sin. 2016, 36, 6812–6822. [Google Scholar] [CrossRef]
Type | Data | Information | Source |
---|---|---|---|
meteorological data | 2 m temperature | Monthly data from 1980 to 2021, data format is nc and spatial resolution is 0.1° × 0.1°. | ERA5 (https://cds.climate.copernicus.eu, accessed on 15 September 2023) |
2 m dewpoint temperature | Monthly data from 1980 to 2021, data format is nc, and the spatial resolution is 0.1° × 0.1°. | ||
temperature | Hourly data from 2000 to 2020, data format is nc, and the spatial resolution is 0.1° × 0.1°. | ||
soil data | SM | Monthly data from 1980 to 2021, data format is nc, and spatial resolution is 0.5° × 0.5°. | GLEAM (https://www.gleam.eu/, accessed on 15 September 2023) |
vegetation data | solar-induced fluorescence | Monthly data from 2001 to 2021, spatial resolution is 0.05° × 0.05°. | Global Ecology Group Data Repository: (http://globalecology.unh.edu/data/GOSIF.html, accessed on 15 September 2023) |
Normalized Differential Vegetation Index | 16 d data from 2001 to 2021, spatial resolution is 250 m × 250 m. | NASA (https://modis.gsfc.nasa.gov/, accessed on 15 September 2023) | |
vegetation type data | GLC_FCS30-2020 | Global 30 m fine land cover | https://data.casearth.cn, accessed on 26 September 2023 |
β | Z | Type | Trend Features |
---|---|---|---|
β > 0 | 2.58 < Z | 4 | Extremely significant increase |
1.96 < Z ≤ 2.58 | 3 | Significantly increased | |
1.65 < Z ≤ 1.96 | 2 | Micro-significant increase | |
Z ≤ 1.65 | 1 | Not significantly increased | |
β = 0 | Z = 0 | 0 | No change |
β < 0 | Z ≤ 1.65 | −1 | Not significantly reduced |
1.65 < Z ≤ 1.96 | −2 | Micro-significant reduction | |
1.96 < Z ≤ 2.58 | −3 | Significantly reduced | |
2.58 < Z | −4 | Extremely significant decrease |
Range | Fundamental Assumption | Principle | Advantages and Disadvantages |
---|---|---|---|
GC (Granger Causality) | The cause precedes the result; linear relationship between variables | vector autoregression | High-order condition sets appear at runtime, which reduces the effectiveness of the algorithm. |
TE (Transfer Entropy) | The cause precedes the result; reasons provide useful information for the prediction of results. | conditional mutual information | It requires the probability distribution of the variables; same as above. |
PC (Peter–Clark algorithm) | The cause precedes the result | graphics | Intuitive; does not require the determination of high-order independence |
CCM (Convergent Cross Mapping) | Primitive manifold and reconstruction shadow manifold | / | It cannot be used for time series with strong coupling relationship. |
Level | Range | Causal Impact Strength | Level | Range | Causal Impact Strength |
---|---|---|---|---|---|
1 | 0.8 < x ≤ 1 | Extremely strong positive causal impact | 7 | −0.2 < x < 0 | Weak negative causal effect |
2 | 0.6 < x ≤ 0.8 | Relatively strong positive causal effect | 8 | −0.4 < x ≤ 0.2 | Moderate negative causal effect |
3 | 0.4 < x ≤ 0.6 | Strong positive causal effect | 9 | −0.6 < x ≤ −0.4 | Strong negative causal effects |
4 | 0.2 < x ≤ 0.4 | Moderate positive causal effect | 10 | −0.8 < x ≤ −0.6 | Relatively strong negative causal effects |
5 | 0 < x ≤ 0.2 | Weak positive causal effect | 11 | −1 ≤ x ≤ −0.8 | Extremely strong negative causal effects |
6 | x = 0 | No causal effect |
Type | Extremely Strong (−) | Relatively Strong (−) | Strong (−) | Moderate (−) | Weak (−) | Weak (+) | Moderate (+) | Strong (+) | Relatively Strong (+) | Extremely Strong (+) |
---|---|---|---|---|---|---|---|---|---|---|
VPD-SM | 4.03 | 47.56 | 35.47 | 7.26 | 0.20 | 0.04 | 0.76 | 2.42 | 2.21 | 0.08 |
SM-NDVI | 0.13 | 3.68 | 12.49 | 17.32 | 4.68 | 5.34 | 24.36 | 23.46 | 8.14 | 0.4 |
VPD-NDVI | 0.05 | 3.42 | 16.27 | 25.32 | 7.06 | 6.82 | 23.96 | 14.03 | 2.98 | 0.09 |
SM-VPD | 4.02 | 44.18 | 32.83 | 7.07 | 0.12 | 0.09 | 1.87 | 7.17 | 2.65 | 0.01 |
NDVI-VPD | 0.06 | 4.15 | 23.33 | 30.97 | 6.61 | 4.80 | 17.74 | 10.28 | 1.98 | 0.06 |
NDVI-SM | 0.12 | 3.44 | 10.35 | 11.76 | 2.81 | 4.28 | 25.90 | 30.03 | 10.84 | 0.48 |
Type | Extremely Strong (−) | Relatively Strong (−) | Strong (−) | Moderate (−) | Weak (−) | Weak (+) | Moderate (+) | Strong (+) | Relatively Strong (+) | Extremely Strong (+) |
---|---|---|---|---|---|---|---|---|---|---|
VPD-SM | 4.02 | 46.51 | 33.18 | 8.32 | 0.24 | 0.04 | 1.51 | 3.19 | 2.83 | 0.14 |
SM-SIF | 0.004 | 1.30 | 8.13 | 12.45 | 2.79 | 2.82 | 19.36 | 31.71 | 20.35 | 1.08 |
VPD-SIF | 0.80 | 10.95 | 22.11 | 17.05 | 3.20 | 3.65 | 22.59 | 16.57 | 3.02 | 0.05 |
SM-VPD | 3.98 | 43.31 | 30.31 | 8.13 | 0.08 | 0.04 | 3.19 | 8.22 | 2.71 | 0.04 |
SIF-VPD | 0.07 | 6.36 | 24.40 | 20.92 | 5.73 | 7.18 | 23.11 | 10.75 | 1.51 | 0.03 |
SIF-SM | 0.003 | 0.84 | 5.76 | 11.84 | 4.71 | 6.10 | 31.98 | 30.06 | 8.59 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Qin, T.; Yan, D.; Lv, X.; Yuan, Z.; Wen, J.; Xu, S.; Yang, Y.; Feng, J.; Li, W. Response of Vegetation to Drought in the Source Region of the Yangtze and Yellow Rivers Based on Causal Analysis. Remote Sens. 2024, 16, 630. https://doi.org/10.3390/rs16040630
Lu J, Qin T, Yan D, Lv X, Yuan Z, Wen J, Xu S, Yang Y, Feng J, Li W. Response of Vegetation to Drought in the Source Region of the Yangtze and Yellow Rivers Based on Causal Analysis. Remote Sensing. 2024; 16(4):630. https://doi.org/10.3390/rs16040630
Chicago/Turabian StyleLu, Jie, Tianling Qin, Denghua Yan, Xizhi Lv, Zhe Yuan, Jie Wen, Shu Xu, Yuhui Yang, Jianming Feng, and Wei Li. 2024. "Response of Vegetation to Drought in the Source Region of the Yangtze and Yellow Rivers Based on Causal Analysis" Remote Sensing 16, no. 4: 630. https://doi.org/10.3390/rs16040630
APA StyleLu, J., Qin, T., Yan, D., Lv, X., Yuan, Z., Wen, J., Xu, S., Yang, Y., Feng, J., & Li, W. (2024). Response of Vegetation to Drought in the Source Region of the Yangtze and Yellow Rivers Based on Causal Analysis. Remote Sensing, 16(4), 630. https://doi.org/10.3390/rs16040630