Prediction of Atmospheric Duct Conditions from a Clutter Power Spectrum Using Deep Learning
Abstract
:1. Introduction
2. Calculation of Clutter Power Spectrums
3. Estimation of an Atmospheric Refractivity Using Deep Learning
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raja Abdullah, R.S.A.; Salah, A.A.; Ismail, A.; Hashim, F.H.; Rashid, N.E.A.; Aziz, N.H.A. Experimental investigation on target detection and tracking in passive radar using long-term evolution signal. IET Radar Sonar Navig. 2016, 10, 577–585. [Google Scholar] [CrossRef]
- Locker, C.; Vaupel, T.; Eibert, T.F. Radiation efficient unidirectional low-profile slot antenna elements for X-band application. IEEE Trans. Antennas Propag. 2005, 53, 2765–2768. [Google Scholar] [CrossRef]
- Dastkhosh, A.R.; Oskouei, H.D.; Khademevatan, G. Compact low weight high gain broadband antenna by polarization-rotation technique for X-band radar. Int. J. Antennas Propag. 2014, 2014, 743046. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, T.; Hu, R.; Su, H.; Liu, Y.; Liu, X.; Suo, J.; Snoussi, H. Multiple kernelized correlation filters (MKCF) for extended object tracking using X-band marine radar data. IEEE Trans. Signal Process. 2019, 67, 3676–3688. [Google Scholar] [CrossRef]
- Wang, A.; Krishnamurthy, V. Signal interpretation of multifunction radars: Modeling and statistical signal processing with Stochastic Context Free Grammar. IEEE Trans. Signal Process. 2008, 56, 1106–1119. [Google Scholar] [CrossRef]
- Wang, S.; Jang, D.; Kim, Y.; Choo, H. Design of S/X-Band dual-loop shared-aperture 2 × 2 array antenna. J. Electromagn. Eng. Sci. 2022, 22, 319–325. [Google Scholar] [CrossRef]
- Lim, T.H.; Go, M.; Seo, C.; Choo, H. Analysis of the target detection performance of Air-to-Air airborne radar using long-range propagation simulation in abnormal atmospheric conditions. Appl. Sci. 2020, 10, 6440. [Google Scholar] [CrossRef]
- Lim, T.; Choo, H. Prediction of target detection probability based on air-to-air long-range scenarios in anomalous atmospheric environments. Remote Sens. 2021, 13, 3943. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, L. Photonic-radar based multiple-target tracking under complex traffic-environments. IEEE Access 2020, 8, 225845. [Google Scholar] [CrossRef]
- Kim, I.; Kim, H.; Lee, J.-H. Theoretical minimum detection range for a rapidly moving target and an experimental evaluation. J. Electromagn. Eng. Sci. 2021, 21, 161–164. [Google Scholar] [CrossRef]
- Reilly, J.P.; Dockery, G.D. Influence of evaporation ducts on radar sea return. IEE Proc. F (Radar Signal Process.) 1990, 137, 80–88. [Google Scholar] [CrossRef]
- Huang, L.F.; Liu, C.G.; Wang, H.G.; Zhu, Q.L.; Zhang, L.J.; Han, J.; Zhang, Y.S.; Wang, Q.N. Experimental analysis of atmospheric ducts and navigation radar over-the-horizon detection. Remote Sens. 2022, 14, 2588. [Google Scholar] [CrossRef]
- Tedesco, M.; Wang, J.R. Atmospheric correction of AMSR-E brightness temperatures for dry snow cover mapping. IEEE Geosci. Remote Sens. Lett. 2006, 3, 320–324. [Google Scholar] [CrossRef]
- Wang, J.R.; Racette, P.; Triesky, M.E.; Browell, E.V.; Ismail, S.; Chang, L.A. Profiling of atmospheric water vapor with MIR and LASE. IEEE Geosci. Remote Sens. Lett. 2002, 40, 1211–1219. [Google Scholar] [CrossRef]
- Birkemeier, W.P.; Duvosin, P.F.; Fontaine, A.B.; Thomson, D.W. Indirect atmospheric measurements utilizing rake tropospheric scatter techniques—Part II: Radiometeorological interpretation of rake channel-sounding observations. Proc. IEEE 1969, 57, 552–559. [Google Scholar] [CrossRef]
- Douvenot, R.; Fabbro, V. On the knowledge of radar coverage at sea using real time refractivity from clutter. IET Radar Sonar Navig. 2010, 4, 293–301. [Google Scholar] [CrossRef]
- Douvenot, R.; Fabbro, V.; Gerstoft, P.; Bourlier, C.; Saillard, J. Real time refractivity from clutter using a best fit approach improved with physical information. Radio Sci. 2010, 45, 1–13. [Google Scholar] [CrossRef]
- Yardim, C.; Gerstoft, P.; Hodgkiss, W.S. Tracking refractivity from clutter using Kalman and Particle filters. IEEE Trans. Antennas Propag. 2008, 56, 1058–1070. [Google Scholar] [CrossRef]
- Yardim, C.; Gerstoft, P.; Hodgkiss, W.S. Estimation of radio refractivity from radar clutter using Bayesian Monte Carlo analysis. IEEE Trans. Antennas Propag. 2006, 54, 1318–1327. [Google Scholar] [CrossRef]
- Jang, D.; Kim, J.; Park, Y.B.; Choo, H. Study of an Atmospheric Refractivity Estimation from a Clutter Using Genetic Algorithm. Appl. Sci. 2022, 12, 8566. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Z.S.; Zhao, Z.; Wang, H.G. Retrieving evaporation duct heights from radar sea clutter using particle swarm optimization (PSO) algorithm. Progress Electromagn. Res. M 2009, 9, 79–91. [Google Scholar] [CrossRef]
- Huang, S.-X.; Zhao, X.-F.; Sheng, Z. Refractivity estimation from radar sea clutter. Chin. Phys. B 2009, 18, 5084–5090. [Google Scholar]
- Ji, H.; Yin, B.; Zhang, J.; Zhang, Y. Joint inversion of evaporation duct based on radar sea clutter and target echo using deep learning. Electronics 2022, 11, 2157. [Google Scholar] [CrossRef]
- Guo, X.; Wu, J.; Zhang, J.; Han, J. Deep learning for solving inversion problem of atmospheric refractivity estimation. Sustain. Cities Soc. 2018, 43, 524–531. [Google Scholar] [CrossRef]
- Tang, W.; Cha, H.; Wei, M.; Tian, B.; Ren, X. An atmospheric refractivity inversion method based on deep learning. Results Phys. 2019, 12, 582–584. [Google Scholar] [CrossRef]
- Cui, M.Y.; Zhang, Y. Deep Learning Method for Evaporation Duct Inversion Based on GPS Signal. Atmosphere 2022, 13, 2091. [Google Scholar] [CrossRef]
- Advanced Refractive Prediction System (AREPS); Ver. 3.6; The Space and Naval Warfare System: San Diego, CA, USA, 2005.
- ITU. The Radio Refractive Index: Its Formula and Refractivity Data. ITU-R P.453. 2019. Available online: https://www.itu.int/rec/R-REC-P.453/en (accessed on 8 September 2019).
- Liu, F.; Pan, J.; Zhou, X.; Li, G.Y. Atmospheric ducting effect in wireless communications: Challenges and opportunities. J. Commun. Inf. Netw. 2021, 6, 101–109. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J. The investigation of cooperation diversity for communication exploiting evaporation ducts in the south China Sea. IEEE Trans. Antennas Propag. 2022, 70, 8337–8347. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, T.; Xu, T.; Wang, Y.; Hu, H. Statistical modeling of evaporation duct channel for maritime broadband communications. IEEE Trans. Veh. Technol. 2022, 71, 10228–10240. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J.; Yang, C. Long-range microwave links guided by evaporation ducts. IEEE Commun. Mag. 2022, 60, 68–72. [Google Scholar] [CrossRef]
- Lim, T.H.; Wang, S.; Chong, Y.J.; Park, Y.B.; Ko, J.; Choo, H. High altitude ducts causing abnormal wave propagation in coastal area of Korea. Microw. Opt. Technol. Lett. 2020, 62, 643–650. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Y.; Zhang, A.; Fan, H.; Guo, L. A Random Forest Algorithm Combined with Bayesian Optimization for Atmospheric Duct Estimation. Remote Sens. 2023, 15, 4296. [Google Scholar] [CrossRef]
- Sanders, F.H.; Sole, R.L.; Bedford, B.L.; Franc, D.; Pawlowitz, T. Effects of RF Interference on Radar Receiver; Institute for Telecommunication Sciences: Boulder, CO, USA, 2006. [Google Scholar]
- Compaleo, J.; Yardim, C.; Xu, L. Refractivity-from-clutter capable, software-defined, coherent-on-receive marine radar. Radio Sci. 2021, 56, 1–19. [Google Scholar] [CrossRef]
- Nathanson, F.E.; Reilly, J.P.; Cohen, M. Radar Design Principles, 2nd ed.; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Hassan, E.; Shams, M.Y.; Hikal, N.A.; Elmougy, S. The effect of choosing optimizer algorithms to improve computer vision tasks: A comparative study. Multimedia Tools Appl. 2023, 82, 16591–16633. [Google Scholar] [CrossRef] [PubMed]
- Jamin, A.; Humeau-Heurtier, A. (Multiscale) cross-entropy methods: A review. Entropy 2019, 22, 45. [Google Scholar] [CrossRef]
- Do, P.N.; Chung, K.S.; Feng, Y.C.; Lin, P.L.; Tsai, B.A. Assimilation of Radar-Derived Refractivity and Radar Data in the Context of Ensemble Kalman Filter: Cases Study of the Southwest Monsoon Experiment. Q. J. R. Meteorol. Soc. 2023, 149, 1365–1390. [Google Scholar] [CrossRef]
- Skiles, S.M.; Painter, T.; Okin, G.S. A method to retrieve the spectral complex refractive index and single scattering optical properties of dust deposited in mountain snow. J. Glaciol. 2017, 6, 133–147. [Google Scholar] [CrossRef]
Hyperparameter | Number of Neurons | Functions | |||
---|---|---|---|---|---|
Epochs | 30 | Layer 1 | 128 | Activation | ReLU |
Minibatch size | 128 | Layer 2 | 64 | Last classification | Softmax |
Learning rate | 0.01 | Layer 3 | 32 | ||
Optimizer | Adam | Layer 4 | 8 | loss | Cross-entropy |
Total Number of Data Items | Validation Accuracy | Prediction Accuracy with the Heuksando Data |
---|---|---|
2800 | 94.35% | 98.31% |
5600 | 95.99% | 98.36% |
8400 | 96.63% | 98.53% |
11,200 | 97.43% | 98.43% |
14,000 | 97.77% | 98.84% |
28,000 | 98.20% | 99.06% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, T.; Cho, J.; Jang, D.; Choo, H. Prediction of Atmospheric Duct Conditions from a Clutter Power Spectrum Using Deep Learning. Remote Sens. 2024, 16, 674. https://doi.org/10.3390/rs16040674
Jin T, Cho J, Jang D, Choo H. Prediction of Atmospheric Duct Conditions from a Clutter Power Spectrum Using Deep Learning. Remote Sensing. 2024; 16(4):674. https://doi.org/10.3390/rs16040674
Chicago/Turabian StyleJin, Taekyeong, Jeongmin Cho, Doyoung Jang, and Hosung Choo. 2024. "Prediction of Atmospheric Duct Conditions from a Clutter Power Spectrum Using Deep Learning" Remote Sensing 16, no. 4: 674. https://doi.org/10.3390/rs16040674
APA StyleJin, T., Cho, J., Jang, D., & Choo, H. (2024). Prediction of Atmospheric Duct Conditions from a Clutter Power Spectrum Using Deep Learning. Remote Sensing, 16(4), 674. https://doi.org/10.3390/rs16040674