Refined Coseismic Slip Model and Surface Deformation of the 2021 Maduo Earthquake: Implications for Sensitivity of Rupture Behaviors to Geometric Complexity
Abstract
:1. Introduction
2. Data Preparation
2.1. Optical Deformation Processing
2.2. Phase Gradient Processing
2.3. Three-Dimensional (3D) Displacement Processing
2.4. Interferogram Down-Sampling
3. Result
3.1. Refined Fault Geometry
3.2. Refined Coseismic Slip Distribution
4. Discussion
4.1. Deformation Patterns of Fault Stepovers
4.2. Rupture Branching at the Western End
4.3. Sensitivity of Rupture Behaviors to Fault Heterogeneity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, D.; Qu, C.; Chen, H.; Shan, X.; Song, X.; Gong, W. Tectonic and Geometric Control on Fault Kinematics of the 2021 Mw7.3 Maduo (China) Earthquake Inferred from Interseismic, Coseismic, and Postseismic InSAR Observations. Geophys. Res. Lett. 2021, 48, e2021GL095417. [Google Scholar] [CrossRef]
- Zhu, Y.; Diao, F.; Fu, Y.; Liu, C.; Xiong, X. Slip rate of the seismogenic fault of the 2021 Maduo earthquake in western China inferred from GPS observations. Sci. China Earth Sci. 2021, 64, 1363–1370. (In Chinese) [Google Scholar] [CrossRef]
- Pan, J.; Li, H.; Chevalier, M.-L.; Tapponnier, P.; Bai, M.; Li, C.; Liu, F.; Liu, D.; Wu, K.; Wang, P.; et al. Co-seismic rupture of the 2021, M7.4 Maduo earthquake (northern Tibet): Short-cutting of the Kunlun fault big bend. Earth Planet. Sci. Lett. 2022, 594, 117703. [Google Scholar] [CrossRef]
- Liu, X.; Xia, T.; Liu, Z.J.; Yao, W.; Xu, J.; Deng, D.; Han, L.; Jia, Z.; Shao, Y.; Wang, Y.; et al. Distributed Characteristics of the Surface Deformations Associated with the 2021 Mw7.4 Madoi Earthquake, Qinghai, China. Seismol. Geol. 2022, 44, 461–483. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, T.; Su, P.; Sun, H.; Ha, G.; Guo, P.; Chen, G.; Thompson Jobe, J. Large Surface-Rupture Gaps and Low Surface Fault Slip of the 2021 Mw7.4 Maduo Earthquake along a Low-Activity Strike-Slip Fault, Tibetan Plateau. Geophys. Res. Lett. 2022, 49, e2021GL096874. [Google Scholar] [CrossRef]
- Liu-Zeng, J.; Yao, W.; Liu, X.; Shao, Y.; Wang, W.; Han, L.; Wang, Y.; Zeng, X.; Li, J.; Wang, Z.; et al. High-resolution structure-from-motion models covering 160 km-long surface ruptures of the 2021 MW 7.4 Madoi earthquake in northern Qinghai-Tibetan Plateau. Earthq. Res. Adv. 2022, 2, 100140. [Google Scholar] [CrossRef]
- Donald, L.W.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Tapponnier, P.; Xu, Z.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Yang, J. Oblique stepwise rise and growth of the Tibet plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef]
- Wei, S.; Zeng, H.; Shi, Q.; Liu, J.; Luo, H.; Hu, W.; Li, Y.; Wang, W.; Ma, Z.; Liu-Zeng, J.; et al. Simultaneous Rupture Propagation Through Fault Bifurcation of the 2021 Mw7.4 Maduo Earthquake. Geophys. Res. Lett. 2022, 49, e2022GL100283. [Google Scholar] [CrossRef]
- Yue, H.; Shen, Z.-K.; Zhao, Z.; Wang, T.; Cao, B.; Li, Z.; Bao, X.; Zhao, L.; Song, X.; Ge, Z.; et al. Rupture process of the 2021 M7.4 Maduo earthquake and implication for deformation mode of the Songpan-Ganzi terrane in Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2022, 119, e2116445119. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, W.; Du, H.; Samsonov, S.; Yi, L. Supershear Rupture during the 2021 MW 7.4 Maduo, China, Earthquake. Geophys. Res. Lett. 2022, 49, e2022GL097984. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, D.; Yao, Q.; Fang, L.; Xu, S.; Huang, Z.; Liu, T.; Wang, Z.; Huang, X. The 2021 Mw 7.3 Madoi, China Earthquake: Transient Supershear Ruptures on a Presumed Immature Strike-Slip Fault. J. Geophys. Res. Solid Earth 2023, 128, e2022JB024641. [Google Scholar] [CrossRef]
- Chen, K.; Avouac, J.-P.; Geng, J.; Liang, C.; Zhang, Z.; Li, Z.; Zhang, S. The 2021 Mw 7.4 Madoi Earthquake: An Archetype Bilateral Slip-Pulse Rupture Arrested at a Splay Fault. Geophys. Res. Lett. 2022, 49, e2021GL095243. [Google Scholar] [CrossRef]
- Wang, W.; Fang, L.; Wu, J.; Tu, H.; Chen, L.; Lai, G.; Zhang, L. Aftershock sequence relocation of the 2021 MS7.4 Maduo Earthquake, Qinghai, China. Sci. China Earth Sci. 2021, 51, 1193–1202. [Google Scholar] [CrossRef]
- Li, C.; Li, T.; Hollingsworth, J.; Zhang, Y.; Qian, L.; Shan, X. Strain Threshold for the Formation of Coseismic Surface Rupture. Geophys. Res. Lett. 2023, 50, e2023GL103666. [Google Scholar] [CrossRef]
- He, K.; Wen, Y.; Xu, C.; Zhao, Y. Fault Geometry and Slip Distribution of the 2021 Mw 7.4 Maduo, China, Earthquake Inferred from InSAR Measurements and Relocated Aftershocks. Seismol. Res. Lett. 2021, 93, 8–20. [Google Scholar] [CrossRef]
- Guo, R.; Yang, H.; Li, Y.; Zheng, Y.; Zhang, L. Complex Slip Distribution of the 2021 Mw 7.4 Maduo, China, Earthquake: An Event Occurring on the Slowly Slipping Fault. Seismol. Res. Lett. 2021, 93, 653–665. [Google Scholar] [CrossRef]
- He, L.; Feng, G.; Wu, X.; Lu, H.; Xu, W.; Wang, Y.; Liu, J.; Hu, J.; Li, Z. Coseismic and Early Postseismic Slip Models of the 2021 Mw 7.4 Maduo Earthquake (Western China) Estimated by Space-Based Geodetic Data. Geophys. Res. Lett. 2021, 48, e2021GL095860. [Google Scholar] [CrossRef]
- Li, Z.; Ding, K.; Zhang, P.; Wen, Y.; Zhao, L.; Chen, J. Coseismic Deformation and Slip Distribution of 2021 Mw 7.4 Madoi Earthquake from GNSS Observation. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 1489. [Google Scholar] [CrossRef]
- Jin, Z.; Fialko, Y. Coseismic and Early Postseismic Deformation Due to the 2021 M7.4 Maduo (China) Earthquake. Geophys. Res. Lett. 2021, 48, e2021GL095213. [Google Scholar] [CrossRef]
- Xu, X.; Tong, X.; Sandwell, D.T.; Milliner, C.W.D.; Dolan, J.F.; Hollingsworth, J.; Leprince, S.; Ayoub, F. Refining the shallow slip deficit. Geophys. J. Int. 2016, 204, 1843–1862. [Google Scholar] [CrossRef]
- Milliner, C.W.D.; Sammis, C.; Allam, A.A.; Dolan, J.F.; Hollingsworth, J.; Leprince, S.; Ayoub, F. Resolving Fine-Scale Heterogeneity of Co-seismic Slip and the Relation to Fault Structure. Sci. Rep. 2016, 6, 27201. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Chen, W.; Wang, D.; Wen, Y.; Nie, Z.; Liu, G.; Dijin, W.; Yu, P.; Qiao, X.; Zhao, B. Coseismic slip and early afterslip of the 2021 Mw 7.4 Maduo, China earthquake constrained by GPS and InSAR data. Tectonophysics 2022, 840, 229558. [Google Scholar] [CrossRef]
- Guo, H.; Lay, T.; Brodsky, E.E. Seismological Indicators of Geologically Inferred Fault Maturity. J. Geophys. Res. Solid Earth 2023, 128, e2023JB027096. [Google Scholar] [CrossRef]
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.P. Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, X.; Mo, X.; Deng, D.; Ruan, Q.; Liu, J.; Jia, Z. Coseismic Deformation Extration Method and Geodynamic Significances of Displacement Gradients Based on Optical Imagery. J. Geod. Geodyn. 2023, in press.
- Sandwell, D.T.; Price, E.J. Phase gradient approach to stacking interferograms. J. Geophys. Res. Solid Earth 1998, 103, 30183–30204. [Google Scholar] [CrossRef]
- Xu, X.; Sandwell, D.; Smith-Konter, B. Coseismic Displacements and Surface Fractures from Sentinel-1 InSAR: 2019 Ridgecrest Earthquakes. Seismol. Res. Lett. 2020, 91, 1979–1985. [Google Scholar] [CrossRef]
- Sandwell, D.; Mellors, R.; Tong, X.; Wei, M.; Wessel, P. Open radar interferometry software for mapping surface Deformation. Eos Trans. Am. Geophys. Union 2011, 92, 234. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ. 2017, 204, 109–121. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry Data Interpretation and Error Analysis; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Zhu, J.; Li, Z.; Hu, J. Research Progress and Methods of InSAR for Deformation Monitoring. Acta Geod. Cartogr. Sin. 2017, 46, 1717. [Google Scholar]
- He, P.; Wen, Y.; Xu, C.; Chen, Y. High-quality three-dimensional displacement fields from new-generation SAR imagery: Application to the 2017 Ezgeleh, Iran, earthquake. J. Geod. 2019, 93, 573–591. [Google Scholar] [CrossRef]
- Fialko, Y.; Simons, M.; Agnew, D. The complete (3-D) surface displacement field in the epicentral area of the 1999 MW7.1 Hector Mine Earthquake, California, from space geodetic observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [Google Scholar] [CrossRef]
- Mo, X.; Jia, Z.; Deng, D.; Huang, Y.; Liu, J.; Ruan, q.; Liu, X. An Adaptive Quadtree Downsampling Method based on Deformation Gradient and Coherence for InSAR Data. Earthq. Res. China 2023. in review. [Google Scholar]
- Jin, Z. Lithospheric deformation due to the 2015 M7.2 Sarez (Pamir) earthquake constrained by 5 years of space geodetic observations. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022461. [Google Scholar] [CrossRef]
- Milliner, C.; Donnellan, A.; Aati, S.; Avouac, J.-P.; Zinke, R.; Dolan, J.F.; Wang, K.; Bürgmann, R. Bookshelf Kinematics and the Effect of Dilatation on Fault Zone Inelastic Deformation: Examples from Optical Image Correlation Measurements of the 2019 Ridgecrest Earthquake Sequence. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020551. [Google Scholar] [CrossRef]
- Choi, E.; Seeber, L.; Steckler, M.S.; Buck, R. One-sided transform basins and “inverted curtains”: Implications for releasing bends along strike-slip faults. Tectonics 2011, 30, TC6006. [Google Scholar] [CrossRef]
- Lozos, J.C.; Oglesby, D.D.; Brune, J.N.; Olsen, K.B. Rupture Propagation and Ground Motion of Strike-Slip Stepovers with Intermediate Fault Segments. Bull. Seismol. Soc. Am. 2015, 105, 387–399. [Google Scholar] [CrossRef]
- Jin, Z.; Fialko, Y.; Yang, H.; Li, Y. Transient Deformation Excited by the 2021 M7.4 Maduo (China) Earthquake: Evidence of a Deep Shear Zone. J. Geophys. Res. Solid Earth 2023, 128, e2023JB026643. [Google Scholar] [CrossRef]
- Wang, R.; Schurr, B.; Milkereit, C.; Shao, Z.; Jin, M. An improved automatic scheme for empirical baseline correction of digital strong-motion records. Bull. Seismol. Soc. Am. 2011, 101, 2029–2044. [Google Scholar] [CrossRef]
- Jia, S.; Guo, W.; Mooney, W.D.; Wang, F.; Liu, Z. Crustal structure of the middle segment of the Qilian fold belt and the coupling mechanism of its associated basin and range system. Tectonophysics 2019, 770, 128154. [Google Scholar] [CrossRef]
- Kaneko, Y.; Hamling, I.J.; Van Dissen, R.J.; Motagh, M.; Samsonov, S.V. InSAR imaging of displacement on flexural-slip faults triggered by the 2013 Mw 6.6 Lake Grassmere earthquake, central New Zealand. Geophys. Res. Lett. 2015, 42, 781–788. [Google Scholar] [CrossRef]
- USGS. Earthquake Catalog Released by U. S. Geological Survey; Earthquake Science Center: New York, NY, USA, 2021. [Google Scholar]
- Pan, J.; Bai, M.; Li, C.; Liu, F.; Li, H.; Liu, D.; Marie-Luce, C.; Wu, K.; Wang, P.; Lu, H.; et al. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo(Qinghai)Ms7.4 earthquake. Acta Geol. Sin. 2021, 95, 1655–1670. (In Chinese) [Google Scholar] [CrossRef]
- Liu-Zeng, J.; Liu, Z.; Liu, X.; Milliner, C.; Avouac, J.-P.; Padilla, A.R.; Xu, S.; Yao, W.; Klinger, Y.; Han, L.; et al. Fault orientation trumps fault maturity in controlling coseismic rupture characteristics of the 2021 Maduo earthquake. AGU Adv. 2023. in review. [Google Scholar]
- Lozos, J.C.; Oglesby, D.D.; Brune, J.N.; Olsen, K.B. Small intermediate fault segments can either aid or hinder rupture propagation at stepovers. Geophys. Res. Lett. 2012, 39, L18305. [Google Scholar] [CrossRef]
- King, G.; Klinger, Y.; Bowman, D.; Tapponnier, P. Slip-partitioned surface breaks for the M w 7.8 2001 Kokoxili earthquake, China. Bull. Seismol. Soc. Am. 2005, 95, 731–738. [Google Scholar] [CrossRef]
- Klinger, Y. Relation between continental strike-slip earthquake segmentation and thickness of the crust. J. Geophys. Res. Solid Earth 2010, 115, B07306. [Google Scholar] [CrossRef]
- Wesnousky, S.G. Predicting the endpoints of earthquake ruptures. Nature 2006, 444, 358–360. [Google Scholar] [CrossRef]
- Liu-Zeng, J.; Sun, J.; Wang, P.; Hudnut, K.W.; Ji, C.; Zhang, Z.; Xu, Q.; Wen, L. Surface ruptures on the transverse Xiaoyudong fault: A significant segment boundary breached during the 2008 Wenchuan earthquake, China. Tectonophysics 2012, 580, 218–241. [Google Scholar] [CrossRef]
- Oglesby, D.D. The Dynamics of Strike-Slip Step-Overs with Linking Dip-Slip Faults. Bull. Seismol. Soc. Am. 2005, 95, 1604–1622. [Google Scholar] [CrossRef]
- Scholz, C.H. The Mechanics of Earthquakes and Faulting, 3rd ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Yao, W.-Q.; Wang, Z.-J.; Liu-Zeng, J.; Liu, X.-L.; Han, L.-F.; Shao, Y.-X.; Wang, W.-X.; Xu, J.; Qin, K.-X.; Gao, Y.-P.; et al. Discussion on coseismic surface rupture length of the 2021 Mw 7.4 Maduo earthquake, Qinghai, China. Seismol. Geol. 2022, 44, 541–559. [Google Scholar]
- Hardebeck, J.L. The impact of static stress change, dynamic stress change, and the background stress on aftershock focal mechanisms. J. Geophys. Res. Solid Earth 2014, 119, 8239–8266. [Google Scholar] [CrossRef]
- Ponti, D.J.; Blair, J.L.; Rosa, C.M.; Thomas, K.; Pickering, A.J.; Akciz, S.; Angster, S.; Avouac, J.-P.; Bachhuber, J.; Bacon, S.; et al. Documentation of Surface Fault Rupture and Ground-Deformation Features Produced by the 4 and 5 July 2019 Mw 6.4 and Mw 7.1 Ridgecrest Earthquake Sequence. Seismol. Res. Lett. 2020, 91, 2942–2959. [Google Scholar] [CrossRef]
- Thompson Jobe, J.A.; Philibosian, B.; Chupik, C.; Dawson, T.; Bennett, S.E.K.; Gold, R.; DuRoss, C.; Ladinsky, T.; Kendrick, K.; Haddon, E.; et al. Evidence of Previous Faulting along the 2019 Ridgecrest, California, Earthquake Ruptures. Bull. Seismol. Soc. Am. 2020, 110, 1427–1456. [Google Scholar] [CrossRef]
- Fialko, Y. Probing the mechanical properties of seismically active crust with space geodesy: Study of the coseismic deformation due to the 1992 Mw7.3 Landers (southern California) earthquake. J. Geophys. Res. Solid Earth 2004, 109, B03307. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Sichoix, L.; Agnew, D.; Bock, Y.; Minster, J.-B. Near real-time radar interferometry of the Mw 7.1 Hector Mine Earthquake. Geophys. Res. Lett. 2000, 27, 3101–3104. [Google Scholar] [CrossRef]
- Koehler, R.D.; Dee, S.; Elliott, A.; Hatem, A.; Pickering, A.; Pierce, I.; Seitz, G. Field Response and Surface-Rupture Characteristics of the 2020 M 6.5 Monte Cristo Range Earthquake, Central Walker Lane, Nevada. Seismol. Res. Lett. 2021, 92, 823–839. [Google Scholar] [CrossRef]
- Pousse-Beltran, L.; Nissen, E.; Bergman, E.A.; Cambaz, M.D.; Gaudreau, É.; Karasözen, E.; Tan, F. The 2020 Mw 6.8 Elazığ (Turkey) Earthquake Reveals Rupture Behavior of the East Anatolian Fault. Geophys. Res. Lett. 2020, 47, e2020GL088136. [Google Scholar] [CrossRef]
- Petersen, M.D.; Dawson, T.E.; Chen, R.; Cao, T.; Wills, C.J.; Schwartz, D.P.; Frankel, A.D. Fault Displacement Hazard for Strike-Slip Faults. Bull. Seismol. Soc. Am. 2011, 101, 805–825. [Google Scholar] [CrossRef]
- Livio, F.; Serva, L.; Gürpinar, A. Locating distributed faulting: Contributions from InSAR imaging to Probabilistic Fault Displacement Hazard Analysis (PFDHA). Quat. Int. 2017, 451, 223–233. [Google Scholar] [CrossRef]
- Liu, J.; Sieh, K.; Hauksson, E. A structural interpretation of the aftershock “cloud” of the 1992 Mw 7.3 Landers earthquake. Bull. Seismol. Soc. Am. 2003, 93, 1333–1344. [Google Scholar] [CrossRef]
- Sieh, K.; Jones, L.; Hauksson, E.; Hudnut, K.; Eberhart-Phillips, D.; Heaton, T.; Hough, S.; Hutton, K.; Kanamori, H.; Lilje, A.; et al. Near-field investigations of the landers earthquake sequence, April to July 1992. Science 1993, 260, 171–176. [Google Scholar] [CrossRef]
- Baize, S.; Nurminen, F.; Sarmiento, A.; Dawson, T.; Takao, M.; Scotti, O.; Azuma, T.; Boncio, P.; Champenois, J.; Cinti, F.R.; et al. A Worldwide and Unified Database of Surface Ruptures (SURE) for Fault Displacement Hazard Analyses. Seismol. Res. Lett. 2019, 91, 499–520. [Google Scholar] [CrossRef]
- Aochi, H.; Madariaga, R.; Fukuyama, E. Effect of normal stress during rupture propagation along nonplanar faults. J. Geophys. Res. Solid Earth 2002, 107, ESE 5-1–ESE 5-10. [Google Scholar] [CrossRef]
- Duan, B.; Oglesby, D.D. Nonuniform prestress from prior earthquakes and the effect on dynamics of branched fault systems. J. Geophys. Res. 2007, 112, B05308. [Google Scholar] [CrossRef]
- Kame, N.; Rice, J.R.; Dmowska, R. Effects of prestress state and rupture velocity on dynamic fault branching. J. Geophys. Res. Solid Earth 2003, 108, B52265. [Google Scholar] [CrossRef]
- Poliakov, A.N.B.; Dmowska, R.; Rice, J.R. Dynamic shear rupture interactions with fault bends and off-axis secondary faulting. J. Geophys. Res. Solid Earth 2002, 107, ESE 6-1–ESE 6-18. [Google Scholar] [CrossRef]
- Douilly, R.; Oglesby, D.D.; Cooke, M.L.; Hatch, J.L. Dynamic models of earthquake rupture along branch faults of the eastern San Gorgonio Pass region in California using complex fault structure. Geosphere 2020, 16, 474–489. [Google Scholar] [CrossRef]
- Liu-Zeng, J.; Zhang, Z.; Wen, L.; Tapponnier, P.; Sun, J.; Xing, X.; Hu, G.; Xu, Q.; Zeng, L.; Ding, L.; et al. Co-seismic ruptures of the 12 May 2008, Ms 8.0 Wenchuan earthquake, Sichuan: East–west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet. Earth Planet. Sci. Lett. 2009, 286, 355–370. [Google Scholar] [CrossRef]
- Klinger, Y.; Xu, X.; Tapponnier, P.; Van der Woerd, J.; Lasserre, C.; King, G. High-Resolution Satellite Imagery Mapping of the Surface Rupture and Slip Distribution of the Mw ~7.8, 14 November 2001 Kokoxili Earthquake, Kunlun Fault, Northern Tibet, China. Bull. Seismol. Soc. Am. 2005, 95, 1970–1987. [Google Scholar] [CrossRef]
- Park, J.-O.; Tsuru, T.; Kodaira, S.; Cummins, P.R.; Kaneda, Y. Splay Fault Branching along the Nankai Subduction Zone. Science 2002, 297, 1157–1160. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, S. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements. Bull. Seismol. Soc. Am. 2002, 92, 1377–1389. [Google Scholar] [CrossRef]
- Hreinsdóttir, S.; Freymueller, J.T.; Bürgmann, R.; Mitchell, J. Coseismic deformation of the 2002 Denali Fault earthquake: Insights from GPS measurements. J. Geophys. Res. Solid Earth 2006, 111, B03308. [Google Scholar] [CrossRef]
- Ayadi, A.; Dorbath, C.; Ousadou, F.; Maouche, S.; Chikh, M.; Bounif, M.A.; Meghraoui, M. Zemmouri earthquake rupture zone (Mw 6.8, Algeria): Aftershocks sequence relocation and 3D velocity model. J. Geophys. Res. Solid Earth 2008, 113, B09301. [Google Scholar] [CrossRef]
- Tang, R.; Zhu, S.; Gan, L. Dynamic Rupture Simulations of the 2008 7.9 Wenchuan Earthquake: Implication for Heterogeneous Initial Stress and Complex Multifault Geometry. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022457. [Google Scholar] [CrossRef]
- Hao, J.; Ji, C.; Yao, Z. Slip history of the 2016 Mw 7.0 Kumamoto earthquake: Intraplate rupture in complex tectonic environment. Geophys. Res. Lett. 2017, 44, 743–750. [Google Scholar] [CrossRef]
- Ando, R.; Kaneko, Y. Dynamic Rupture Simulation Reproduces Spontaneous Multifault Rupture and Arrest during the 2016 Mw 7.9 Kaikoura Earthquake. Geophys. Res. Lett. 2018, 45, 12875–12883. [Google Scholar] [CrossRef]
- Li, Y.-G.; Vidale, J.E.; Oglesby, D.D.; Day, S.M.; Cochran, E. Multiple-fault rupture of the M7.1 Hector Mine, California, earthquake from fault zone trapped waves. J. Geophys. Res. Solid Earth 2003, 108, B32165. [Google Scholar] [CrossRef]
- Feng, W.; Samsonov, S.; Qiu, Q.; Wang, Y.; Zhang, P.; Li, T.; Zheng, W. Orthogonal Fault Rupture and Rapid Postseismic Deformation Following 2019 Ridgecrest, California, Earthquake Sequence Revealed from Geodetic Observations. Geophys. Res. Lett. 2020, 47, e2019GL086888. [Google Scholar] [CrossRef]
- Perrin, C.; Manighetti, I.; Ampuero, J.-P.; Cappa, F.; Gaudemer, Y. Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth. J. Geophys. Res. Solid Earth 2016, 121, 3666–3685. [Google Scholar] [CrossRef]
- Socquet, A.; Hollingsworth, J.; Pathier, E.; Bouchon, M. Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nat. Geosci. 2019, 12, 192–199. [Google Scholar] [CrossRef]
- Scholz, C.; Lawler, T. Slip tapers at the tips of faults and earthquake ruptures. Geophys. Res. Lett. 2004, 312, L21609. [Google Scholar] [CrossRef]
- Gallovič, F.; Zahradník, J.; Plicka, V.; Sokos, E.; Evangelidis, C.; Fountoulakis, I.; Turhan, F. Complex rupture dynamics on an immature fault during the 2020 Mw 6.8 Elazığ earthquake, Turkey. Commun. Earth Environ. 2020, 1, 40. [Google Scholar] [CrossRef]
- Dunham, E.M.; Favreau, P.; Carlson, J.M. A Supershear Transition Mechanism for Cracks. Science 2003, 299, 1557–1559. [Google Scholar] [CrossRef]
- Bruhat, L.; Fang, Z.; Dunham, E.M. Rupture complexity and the supershear transition on rough faults. J. Geophys. Res. Solid Earth 2016, 121, 210–224. [Google Scholar] [CrossRef]
- Hu, F.; Xu, J.; Zhang, Z.; Chen, X. Supershear transition mechanism induced by step over geometry. J. Geophys. Res. Solid Earth 2016, 121, 8738–8749. [Google Scholar] [CrossRef]
- Ryan, K.J.; Oglesby, D.D. Dynamically modeling fault step overs using various friction laws. J. Geophys. Res. Solid Earth 2014, 119, 5814–5829. [Google Scholar] [CrossRef]
- Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults. J. Geophys. Res. Solid Earth 1999, 104, 20183–20202. [Google Scholar] [CrossRef]
- Xiong, X.; Shan, B.; Yong, Z.; Wang, R. Stress transfer and its implication for earthquake hazard on the Kunlun Fault, Tibet. Tectonophysics 2010, 482, 216–225. [Google Scholar] [CrossRef]
- Yoshimitsu, O. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1992, 82, 1018–1040. [Google Scholar]
- Wang, R.; Lorenzo-Martín, F.; Roth, F. PSGRN/PSCMP—A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput. Geosci. 2006, 32, 527–541. [Google Scholar] [CrossRef]
- Fang, J.; Ou, Q.; Wright, T.J.; Okuwaki, R.; Amey, R.M.J.; Craig, T.J.; Elliott, J.R.; Hooper, A.; Lazecký, M.; Maghsoudi, Y. Earthquake Cycle Deformation Associated with the 2021 MW 7.4 Maduo (Eastern Tibet) Earthquake: An Intrablock Rupture Event on a Slow-Slipping Fault from Sentinel-1 InSAR and Teleseismic Data. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024268. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, W.; Fang, N.; Liu, J.; Feng, G. Coseismic and early postseismic fault slip model and the seismogenic fault friction properties of the 2021 Qinghai Madoi Mw7.3 earthquake. Chin. J. Geophys. 2023, 66, 1086–1097. (In Chinese) [Google Scholar]
Segment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Strike (°) | 315 | 275 | 288 | 284 | 293 | 285 | 88 | 115 |
Dip (°) | 73–78 | 73–78 | 75–85 | 75 | 75 | 80–90 | 78–83 | 78–83 |
Direction of dip | North | Vertical | South |
This Study | Wei et al. 2022 [9] | Zhao et al. 2021 [1] | He et al. 2021 [18] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Asperity | lon./° | lat./° | depth/km | Strike/° | Dip/° | Rake/° | Max_slip/m | Mw | Dip | Dip | Dip |
M7 | 97.83 | 34.78 | 5.2 | 315 | 77N | 34 | 1.6 | 6.52 | 83°S | ||
M1 | 97.71 | 34.76 | 5.2 | 95 | 75N | −6 | 3.4 | 6.69 | 56°N | 85°S | 77°N |
M2 | 98.00 | 34.71 | 5.2 | 108 | 81N | 10 | 5.3 | 6.95 | 67°N | 85°N | 72°N |
M3 | 98.57 | 34.57 | 3.7 | 110 | 85N | 10 | 3.9 | 6.49 | 88°N | 82°N | |
M4 | 98.66 | 34.55 | 6.9 | 105 | 90 | 7 | 6.0 | 6.87 | 81°N | 85°N | |
M5 | 99.11 | 34.47 | 6.8 | 88 | 81S | −7 | 4.3 | 6.85 | 89°S | 80°N | 90° |
M6 | 99.98 | 34.47 | 5.3 | 115 | 82S | 27 | 2.9 | 6.84 | 89°N | 85°N | 90° |
Mw | 7.35 | FFM:7.44 MPS:7.42 | 7.38 | 7.43 |
Event | Bifurcation | N/E End | S/W End | Reference |
---|---|---|---|---|
1999 Mw7.1 Hector Mine earthquake | Unilateral | NE, uncertain | [76] | |
2002 Mw7.9 Denali earthquake | Unilateral | SW, uncertain | [77] | |
2003 Mw6.8 Zemmouri earthquake | Unilateral | SW, uncertain | [78] | |
2008 Mw7.9 Wenchuan earthquake | Unilateral | SW, static | [79] | |
2010 Mw 6.9 Yushu earthquake | Unilateral | W, uncertain | [14] | |
2015 M7.2 Sarez earthquake | Unilateral | E, dynamic | [37] | |
2016 M7.2 Kumamoto earthquake | Unilateral | SW, static | [80] | |
2016 Mw7.9 Kaikoura earthquake | Unilateral | SW, dynamic | [81] | |
2021 Ms7.4 Maduo earthquake | Unilateral | E, dynamic | [14] | |
2021 Ms7.4 Maduo earthquake | Unilateral | W, static | [17] | |
1992 Mw7.3 Landers earthquake | Bilateral | N, static | S, static | [59] |
1999 M7.1 Hector Mine earthquake | Bilateral | N, dynamic | S, dynamic | [82] |
2019 Ridgecrest earthquake sequence (Mw7.1 event) | Bilateral | NW, static | SE, static | [83] |
2021 Ms7.4 Maduo earthquake | Bilateral | E | W | [18], This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Deng, D.; Jia, Z.; Liu-Zeng, J.; Mo, X.; Huang, Y.; Ruan, Q.; Liu, J. Refined Coseismic Slip Model and Surface Deformation of the 2021 Maduo Earthquake: Implications for Sensitivity of Rupture Behaviors to Geometric Complexity. Remote Sens. 2024, 16, 713. https://doi.org/10.3390/rs16040713
Liu X, Deng D, Jia Z, Liu-Zeng J, Mo X, Huang Y, Ruan Q, Liu J. Refined Coseismic Slip Model and Surface Deformation of the 2021 Maduo Earthquake: Implications for Sensitivity of Rupture Behaviors to Geometric Complexity. Remote Sensing. 2024; 16(4):713. https://doi.org/10.3390/rs16040713
Chicago/Turabian StyleLiu, Xiaoli, Debeier Deng, Zhige Jia, Jing Liu-Zeng, Xinyu Mo, Yu Huang, Qiaozhe Ruan, and Juntao Liu. 2024. "Refined Coseismic Slip Model and Surface Deformation of the 2021 Maduo Earthquake: Implications for Sensitivity of Rupture Behaviors to Geometric Complexity" Remote Sensing 16, no. 4: 713. https://doi.org/10.3390/rs16040713
APA StyleLiu, X., Deng, D., Jia, Z., Liu-Zeng, J., Mo, X., Huang, Y., Ruan, Q., & Liu, J. (2024). Refined Coseismic Slip Model and Surface Deformation of the 2021 Maduo Earthquake: Implications for Sensitivity of Rupture Behaviors to Geometric Complexity. Remote Sensing, 16(4), 713. https://doi.org/10.3390/rs16040713