Optimal Integration of Optical and SAR Data for Improving Alfalfa Yield and Quality Traits Prediction: New Insights into Satellite-Based Forage Crop Monitoring
Abstract
:1. Introduction
2. Data and Method
2.1. Study Site and In Situ Measurements
2.2. Sentinel-2 and Sentinel-1 Satellite Data
2.3. MODIS Surface Reflectance and LAI Products
2.4. Methods
3. Results and Discussion
3.1. PROSAIL Simulation and LAI Retrieval Validation
3.2. Comparison of the Relationship between Alfalfa Yield and LAI and VIs
3.3. Investigation of the Additional Contribution of LAI to Prediction Accuracy
3.4. Comparison of Prediction Accuracy Using Optical- and SAR-Based Models
3.5. Optimal Integration of Optical and SAR Data
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suweis, S.; Carr, J.A.; Maritan, A.; Rinaldo, A.; D’Odorico, P. Resilience and reactivity of global food security. Proc. Natl. Acad. Sci. USA 2015, 112, 6902–6907. [Google Scholar] [CrossRef]
- Wu, W.; Yu, Q.; You, L.; Chen, K.; Tang, H.; Liu, J. Global cropping intensity gaps: Increasing food production without cropland expansion. Land Use Policy 2018, 76, 515–525. [Google Scholar] [CrossRef]
- Fujimori, S.; Hasegawa, T.; Krey, V.; Riahi, K.; Bertram, C.; Bodirsky, B.L.; Bosetti, V.; Callen, J.; Després, J.; Doelman, J.; et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2019, 2, 386–396. [Google Scholar] [CrossRef]
- World Health Organization. The State of Food Security and Nutrition in the World 2021: Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; Food & Agriculture Org.: Rome, Italy, 2021; Volume 2021. [Google Scholar]
- Pradhan, P.; Costa, L.; Rybski, D.; Lucht, W.; Kropp, J.P. A Systematic Study of Sustainable Development Goal (SDG) Interactions. Earth’s Future 2017, 5, 1169–1179. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Soriano-González, J.; Angelats, E.; Martínez-Eixarch, M.; Alcaraz, C. Monitoring rice crop and yield estimation with Sentinel-2 data. Field Crops Res. 2022, 281, 108507. [Google Scholar] [CrossRef]
- Tanabe, R.; Matsui, T.; Tanaka, T.S.T. Winter wheat yield prediction using convolutional neural networks and UAV-based multispectral imagery. Field Crops Res. 2023, 291, 108786. [Google Scholar] [CrossRef]
- Tedesco, D.; de Oliveira, M.F.; dos Santos, A.F.; Costa Silva, E.H.; de Souza Rolim, G.; da Silva, R.P. Use of remote sensing to characterize the phenological development and to predict sweet potato yield in two growing seasons. Eur. J. Agron. 2021, 129, 126337. [Google Scholar] [CrossRef]
- Marzougui, A.; McGee, R.J.; Van Vleet, S.; Sankaran, S. Remote sensing for field pea yield estimation: A study of multi-scale data fusion approaches in phenomics. Front. Plant Sci. 2023, 14, 1111575. [Google Scholar] [CrossRef] [PubMed]
- Pintens, D.A.; Shinners, K.J.; Friede, J.C.; Kalscheur, K.F.; Digman, M.F.; Combs, D.K. Intensive mechanical processing of forage crops to improve fibre digestion. Grass Forage Sci. 2022, 77, 55–65. [Google Scholar] [CrossRef]
- Suwignyo, B.; Aristia Rini, E.; Helmiyati, S. The profile of tropical alfalfa in Indonesia: A review. Saudi J. Biol. Sci. 2023, 30, 103504. [Google Scholar] [CrossRef]
- Azadbakht, M.; Ashourloo, D.; Aghighi, H.; Homayouni, S.; Shahrabi, H.S.; Matkan, A.; Radiom, S. Alfalfa yield estimation based on time series of Landsat 8 and PROBA-V images: An investigation of machine learning techniques and spectral-temporal features. Remote Sens. Appl. Soc. Environ. 2022, 25, 100657. [Google Scholar] [CrossRef]
- Kayad, A.G.; Al-Gaadi, K.A.; Tola, E.; Madugundu, R.; Zeyada, A.M.; Kalaitzidis, C. Assessing the Spatial Variability of Alfalfa Yield Using Satellite Imagery and Ground-Based Data. PLoS ONE 2016, 11, e0157166. [Google Scholar] [CrossRef]
- Kang, Y.; Ozdogan, M.; Zhu, X.; Ye, Z.; Hain, C.; Anderson, M. Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest. Environ. Res. Lett. 2020, 15, 064005. [Google Scholar] [CrossRef]
- Barriguinha, A.; Jardim, B.; de Castro Neto, M.; Gil, A. Using NDVI, climate data and machine learning to estimate yield in the Douro wine region. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103069. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.N. Comparing Landsat-8 and Sentinel-2 top of atmosphere and surface reflectance in high latitude regions: Case study in Alaska. Geocarto Int. 2022, 37, 6052–6071. [Google Scholar] [CrossRef]
- Chen, J.M.; Liu, J.; Leblanc, S.G.; Lacaze, R.; Roujean, J.-L. Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sens. Environ. 2003, 84, 516–525. [Google Scholar] [CrossRef]
- Fang, H.L.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Zeng, L.; Peng, G.; Meng, R.; Man, J.; Li, W.; Xu, B.; Lv, Z.; Sun, R. Wheat Yield Prediction Based on Unmanned Aerial Vehicles-Collected Red–Green–Blue Imagery. Remote Sens. 2021, 13, 2937. [Google Scholar] [CrossRef]
- Ziliani, M.G.; Altaf, M.U.; Aragon, B.; Houborg, R.; Franz, T.E.; Lu, Y.; Sheffield, J.; Hoteit, I.; McCabe, M.F. Early season prediction of within-field crop yield variability by assimilating CubeSat data into a crop model. Agric. For. Meteorol. 2022, 313, 108736. [Google Scholar] [CrossRef]
- Kayad, A.; Rodrigues, F.A., Jr.; Naranjo, S.; Sozzi, M.; Pirotti, F.; Marinello, F.; Schulthess, U.; Defourny, P.; Gerard, B.; Weiss, M. Radiative transfer model inversion using high-resolution hyperspectral airborne imagery—Retrieving maize LAI to access biomass and grain yield. Field Crops Res. 2022, 282, 108449. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, Z.; Mu, L.; Xu, R.; Yang, H. Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China. Agric. Water Manag. 2021, 248, 106764. [Google Scholar] [CrossRef]
- Liu, C.-a.; Chen, Z.-x.; Shao, Y.; Chen, J.-s.; Hasi, T.; Pan, H.-z. Research advances of SAR remote sensing for agriculture applications: A review. J. Integr. Agric. 2019, 18, 506–525. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Z. An improved fusion of Landsat-7/8, Sentinel-2, and Sentinel-1 data for monitoring alfalfa: Implications for crop remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103533. [Google Scholar] [CrossRef]
- Wiseman, G.; McNairn, H.; Homayouni, S.; Shang, J. RADARSAT-2 Polarimetric SAR Response to Crop Biomass for Agricultural Production Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4461–4471. [Google Scholar] [CrossRef]
- Kumar, P.; Prasad, R.; Gupta, D.K.; Mishra, V.N.; Vishwakarma, A.K.; Yadav, V.P.; Bala, R.; Choudhary, A.; Avtar, R. Estimation of winter wheat crop growth parameters using time series Sentinel-1A SAR data. Geocarto Int. 2017, 33, 942–956. [Google Scholar] [CrossRef]
- Mandal, D.; Hosseini, M.; McNairn, H.; Kumar, V.; Bhattacharya, A.; Rao, Y.S.; Mitchell, S.; Robertson, L.D.; Davidson, A.; Dabrowska-Zielinska, K. An investigation of inversion methodologies to retrieve the leaf area index of corn from C-band SAR data. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101893. [Google Scholar] [CrossRef]
- Attema, E.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci. 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Kaplan, G.; Fine, L.; Lukyanov, V.; Malachy, N.; Tanny, J.; Rozenstein, O. Using Sentinel-1 and Sentinel-2 imagery for estimating cotton crop coefficient, height, and Leaf Area Index. Agric. Water Manag. 2023, 276, 108056. [Google Scholar] [CrossRef]
- Bhattarai, R.; Rahimzadeh-Bajgiran, P.; Weiskittel, A.; Homayouni, S.; Gara, T.W.; Hanavan, R.P. Estimating species-specific leaf area index and basal area using optical and SAR remote sensing data in Acadian mixed spruce-fir forests, USA. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102727. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Parida, B.R. Predicting paddy yield at spatial scale using optical and Synthetic Aperture Radar (SAR) based satellite data in conjunction with field-based Crop Cutting Experiment (CCE) data. Int. J. Remote Sens. 2020, 42, 2046–2071. [Google Scholar] [CrossRef]
- Beeri, O.; Netzer, Y.; Munitz, S.; Mintz, D.F.; Pelta, R.; Shilo, T.; Horesh, A.; Mey-tal, S. Kc and LAI Estimations Using Optical and SAR Remote Sensing Imagery for Vineyards Plots. Remote Sens. 2020, 12, 3478. [Google Scholar] [CrossRef]
- Baumann, M.; Levers, C.; Macchi, L.; Bluhm, H.; Waske, B.; Gasparri, N.I.; Kuemmerle, T. Mapping continuous fields of tree and shrub cover across the Gran Chaco using Landsat 8 and Sentinel-1 data. Remote Sens. Environ. 2018, 216, 201–211. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; Narine, L.L.; Pascual, A.; Gonzalez-Ferreiro, E.; Botequim, B.; Malambo, L.; Neuenschwander, A.; Popescu, S.C.; Godinho, S. Aboveground biomass mapping by integrating ICESat-2, SENTINEL-1, SENTINEL-2, ALOS2/PALSAR2, and topographic information in Mediterranean forests. GIScience Remote Sens. 2022, 59, 1509–1533. [Google Scholar] [CrossRef]
- NASS. State Agriculture Overview—New York. 2022. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NEW%20YORK (accessed on 16 February 2024).
- Crabbe, R.A.; Lamb, D.W.; Edwards, C.; Andersson, K.; Schneider, D. A Preliminary Investigation of the Potential of Sentinel-1 Radar to Estimate Pasture Biomass in a Grazed, Native Pasture Landscape. Remote Sens. 2019, 11, 872. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Tazmul Islam, M.; Meng, Q. An exploratory study of Sentinel-1 SAR for rapid urban flood mapping on Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 103002. [Google Scholar] [CrossRef]
- dos Santos, E.P.; da Silva, D.D.; do Amaral, C.H.; Fernandes-Filho, E.I.; Dias, R.L.S. A Machine Learning approach to reconstruct cloudy affected vegetation indices imagery via data fusion from Sentinel-1 and Landsat 8. Comput. Electron. Agric. 2022, 194, 106753. [Google Scholar] [CrossRef]
- Schaaf, C.; Wang, Z. MCD43A4 MODIS/Terra+ Aqua BRDF/Albedo Nadir BRDF Adjusted RefDaily L3 Global 500 m V006. NASA EOSDIS Land Processes DAAC. 2015. Available online: https://lpdaac.usgs.gov/products/mcd43a4v006/ (accessed on 31 July 2023).
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef]
- Sun, B.; Wang, C.F.; Yang, C.H.; Xu, B.D.; Zhou, G.S.; Li, X.Y.; Xie, J.; Xu, S.J.; Liu, B.; Xie, T.J.; et al. Retrieval of rapeseed leaf area index using the PROSAIL model with canopy coverage derived from UAV images as a correction parameter. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102373. [Google Scholar] [CrossRef]
- Ying, W.; Wu, H.; Li, Z.-L. Net Surface Shortwave Radiation Retrieval Using Random Forest Method With MODIS/AQUA Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2252–2259. [Google Scholar] [CrossRef]
- Dang, A.T.N.; Nandy, S.; Srinet, R.; Luong, N.V.; Ghosh, S.; Senthil Kumar, A. Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecol. Inform. 2019, 50, 24–32. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.N.; Pang, S.N.; Cheng, Q. Applicability evaluation of Landsat-8 for estimating low concentration colored dissolved organic matter in inland water. Geocarto Int. 2022, 37, 1–15. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.-N.; Tian, Y.Q.; Yu, Q. Estimation of Colored Dissolved Organic Matter From Landsat-8 Imagery for Complex Inland Water: Case Study of Lake Huron. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2201–2212. [Google Scholar] [CrossRef]
- Wolanin, A.; Mateo-García, G.; Camps-Valls, G.; Gómez-Chova, L.; Meroni, M.; Duveiller, G.; Liangzhi, Y.; Guanter, L. Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environ. Res. Lett. 2020, 15, 024019. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.N.; Tian, Y.Q.; Yu, Q.; Zheng, Y.H.; Huang, L.T. Remote estimation of colored dissolved organic matter and chlorophyll-a in Lake Huron using Sentinel-2 measurements. J. Appl. Remote Sens. 2017, 11, 036007. [Google Scholar] [CrossRef]
- Mutanga, O.; Masenyama, A.; Sibanda, M. Spectral saturation in the remote sensing of high-density vegetation traits: A systematic review of progress, challenges, and prospects. ISPRS J. Photogramm. Remote Sens. 2023, 198, 297–309. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Ustin, S.L.; Whiting, M.L. Temporal and Spatial Relationships between Within-Field Yield Variability in Cotton and High-Spatial Hyperspectral Remote Sensing Imagery. Agron. J. 2005, 97, 641–653. [Google Scholar] [CrossRef]
- Johnson, D.M. A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 65–81. [Google Scholar] [CrossRef]
- Xie, Q.Y.; Dash, A.D.; Huete, A.R.O.; Jiang, A.H.; Yin, G.F.; Ding, Y.L.; Peng, D.L.; Hall, R.O.E.; Brown, L.K.; Shi, Y.; et al. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 187–195. [Google Scholar] [CrossRef]
- Kern, A.; Barcza, Z.; Marjanović, H.; Árendás, T.; Fodor, N.; Bónis, P.; Bognár, P.; Lichtenberger, J. Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices. Agric. For. Meteorol. 2018, 260–261, 300–320. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Zhang, Y.; Walker, J.P.; Pauwels, V.R.N. Assimilation of wheat and soil states for improved yield prediction: The APSIM-EnKF framework. Agric. Syst. 2022, 201, 103456. [Google Scholar] [CrossRef]
- Togliatti, K.; Hartman, T.; Walker, V.A.; Arkebauer, T.J.; Suyker, A.E.; VanLoocke, A.; Hornbuckle, B.K. Satellite L–band vegetation optical depth is directly proportional to crop water in the US Corn Belt. Remote Sens. Environ. 2019, 233, 111378. [Google Scholar] [CrossRef]
- Ma, C.; Li, X.; McCabe, M.F. Retrieval of High-Resolution Soil Moisture through Combination of Sentinel-1 and Sentinel-2 Data. Remote Sens. 2020, 12, 2303. [Google Scholar] [CrossRef]
- Zheng-Shu, Z.; Boerner, W.M.; Sato, M. Development of a ground-based polarimetric broadband SAR system for noninvasive ground-truth validation in vegetation monitoring. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1803–1810. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W. Consistency evaluation of landsat-7 and landsat-8 for improved monitoring of colored dissolved organic matter in complex water. Geocarto Int. 2022, 37, 91–102. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.; Tian, Y.Q.; Yu, Q. Monitoring dissolved organic carbon by combining Landsat-8 and Sentinel-2 satellites: Case study in Saginaw River estuary, Lake Huron. Sci. Total Environ. 2020, 718, 137374. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Barrett, B.; Cawkwell, F.; Green, S.; Dwyer, E.; Neumann, M. Application of Repeat-Pass TerraSAR-X Staring Spotlight Interferometric Coherence to Monitor Pasture Biophysical Parameters: Limitations and Sensitivity Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3225–3231. [Google Scholar] [CrossRef]
- Abdikan, S.; Sekertekin, A.; Narin, O.G.; Delen, A.; Balik Sanli, F. A comparative analysis of SLR, MLR, ANN, XGBoost and CNN for crop height estimation of sunflower using Sentinel-1 and Sentinel-2. Adv. Space Res. 2023, 71, 3045–3059. [Google Scholar] [CrossRef]
Symbol | Parameter | Range | Step | Unit | Number |
---|---|---|---|---|---|
Leaf parameters | |||||
N | Leaf structure index | 1.5 | n/a | unitless | 1 |
Cw | Equivalent water thickness | 0.015 | n/a | cm | 1 |
Cab | Leaf chlorophyll content | 10–100 | 10 | μg/cm2 | 10 |
Cm | Dry matter content | 0.001–0.019 | 0.003 | g/cm2 | 7 |
Canopy parameters | |||||
ALA | Average leaf angle | 30–70 | 10 | degree | 5 |
LAI | Leaf area index | 0.5–9 | 0.5 | m2/m2 | 18 |
Hspot | Hot spot parameter | 0.1–0.5 | 0.2 | m/m | 3 |
tts | Solar zenith angle | 20–60 | 10 | degree | 5 |
tto | Observation zenith angle | 0 | n/a | degree | 1 |
psi | Relative azimuth | 0 | n/a | degree | 1 |
Full Name | Acronym | Formula |
---|---|---|
Normalized difference vegetation index | NDVI | |
2-band enhanced vegetation index | EVI2 | |
Near-infrared reflectance of vegetation | NIRv | NDVI × NIR |
Normalized difference water index | NDWI | |
Green–red vegetation index | GRVI | |
Green normalized difference vegetation index | GNDVI | |
Green chlorophyll index | GCI | |
Soil adjusted vegetation index | SAVI |
Index | LAI | NDVI | EVI2 | NIRv | NDWI | GRVI | GNDVI | GCI | SAVI |
---|---|---|---|---|---|---|---|---|---|
Data in Wisconsin (N = 133) | |||||||||
Yield | 0.804 ** | 0.659 ** | 0.501 ** | 0.469 ** | 0.790 ** | 0.539 ** | 0.781 ** | 0.796 ** | 0.513 ** |
CP | −0.001 | 0.116 | 0.121 | 0.111 | 0.030 | 0.334 ** | −0.116 | −0.104 | 0.125 |
ADF | 0.508 ** | 0.431 ** | 0.326 ** | 0.306 ** | 0.514 ** | 0.300 ** | 0.591 ** | 0.621 ** | 0.332 ** |
NDF | 0.476 ** | 0.364 ** | 0.270 * | 0.253 * | 0.477 ** | 0.243 * | 0.536 ** | 0.575 ** | 0.275 * |
NDFD | −0.292 ** | −0.195 | −0.141 | −0.140 | −0.255 * | −0.027 | −0.403 ** | −0.433 ** | −0.138 |
Data in New York state (N = 178) | |||||||||
Yield | 0.662 ** | 0.251 ** | 0.486 ** | 0.511 ** | 0.654 ** | 0.155 | 0.411 ** | 0.472 ** | 0.472 ** |
CP | −0.398 ** | −0.129 | −0.194 * | −0.200 * | −0.430 ** | 0.074 | −0.353 ** | −0.370 ** | −0.193 |
ADF | 0.080 | 0.082 | 0.102 | 0.111 | 0.132 | −0.031 | 0.158 | 0.153 | 0.100 |
NDF | 0.051 | 0.017 | 0.005 | 0.007 | 0.101 | −0.163 | 0.169 | 0.155 | 0.007 |
NDFD | −0.245 * | −0.166 | −0.207 * | −0.220 * | −0.259 ** | −0.112 | −0.206 * | −0.213 * | −0.200* |
All data (N = 311) | |||||||||
Yield | 0.701 ** | 0.421 ** | 0.432 ** | 0.432 ** | 0.669 ** | 0.315 ** | 0.549 ** | 0.594 ** | 0.429 ** |
CP | −0.160 * | 0.018 | −0.035 | −0.049 | −0.140 | 0.225 ** | −0.211 ** | −0.208 ** | −0.029 |
ADF | 0.277 ** | 0.252 ** | 0.123 | 0.111 | 0.301 ** | 0.157 * | 0.349 ** | 0.373 ** | 0.128 |
NDF | 0.231 ** | 0.167 * | 0.090 | 0.079 | 0.264 ** | 0.011 | 0.321 ** | 0.335 ** | 0.095 |
NDFD | −0.275 ** | −0.182 * | −0.192 ** | −0.198 ** | −0.266 ** | −0.054 | −0.329 ** | −0.345 ** | −0.187 ** |
Group | Yield | CP | ADF | NDF | NDFD | |||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
I | 0.805 | 0.0368 | 0.755 | 1.465 | 0.594 | 2.039 | 0.657 | 2.545 | 0.636 | 2.971 |
II | 0.789 | 0.0382 | 0.755 | 1.460 | 0.598 | 2.030 | 0.657 | 2.544 | 0.632 | 2.979 |
Parameter | VV | VH | VH/VV | RVI |
---|---|---|---|---|
Data in Wisconsin (N = 111) | ||||
Yield | 0.456 ** | 0.614 ** | 0.014 | 0.187 |
CP | −0.134 | 0.118 | −0.199 | 0.206 |
ADF | 0.149 | 0.002 | 0.131 | −0.112 |
NDF | 0.148 | −0.074 | 0.182 | −0.178 |
NDFD | −0.097 | 0.180 | −0.198 | 0.231 |
Data in New York (N = 70) | ||||
Yield | 0.085 | −0.196 | 0.232 | −0.265 |
CP | 0.074 | 0.273 | −0.109 | 0.200 |
ADF | −0.113 | −0.251 | 0.057 | −0.145 |
NDF | −0.118 | −0.254 | 0.055 | −0.143 |
NDFD | 0.227 | 0.323 * | 0.010 | 0.115 |
All data (N = 181) | ||||
Yield | 0.199 * | 0.302 ** | 0.010 | 0.094 |
CP | −0.103 | 0.139 | −0.189 | 0.217 * |
ADF | −0.093 | −0.139 | −0.017 | −0.042 |
NDF | −0.055 | −0.172 | 0.043 | −0.105 |
NDFD | −0.088 | 0.173 | −0.190 | 0.233 * |
Case | Yield | CP | ADF | NDF | NDFD | |||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
a | 0.835 | 0.0369 | 0.606 | 1.636 | 0.524 | 2.000 | 0.531 | 2.218 | 0.670 | 2.514 |
b | 0.640 | 0.0564 | 0.470 | 2.095 | 0.537 | 1.986 | 0.568 | 2.146 | 0.407 | 3.388 |
c | 0.839 | 0.0365 | 0.621 | 1.610 | 0.558 | 1.928 | 0.572 | 2.118 | 0.685 | 2.477 |
d | 0.828 | 0.0416 | 0.636 | 1.737 | 0.558 | 1.941 | 0.576 | 2.122 | 0.652 | 2.786 |
e | 0.846 | 0.0354 | 0.636 | 1.570 | 0.559 | 1.926 | 0.580 | 2.097 | 0.679 | 2.426 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yu, T.; Cherney, J.H.; Zhang, Z. Optimal Integration of Optical and SAR Data for Improving Alfalfa Yield and Quality Traits Prediction: New Insights into Satellite-Based Forage Crop Monitoring. Remote Sens. 2024, 16, 734. https://doi.org/10.3390/rs16050734
Chen J, Yu T, Cherney JH, Zhang Z. Optimal Integration of Optical and SAR Data for Improving Alfalfa Yield and Quality Traits Prediction: New Insights into Satellite-Based Forage Crop Monitoring. Remote Sensing. 2024; 16(5):734. https://doi.org/10.3390/rs16050734
Chicago/Turabian StyleChen, Jiang, Tong Yu, Jerome H. Cherney, and Zhou Zhang. 2024. "Optimal Integration of Optical and SAR Data for Improving Alfalfa Yield and Quality Traits Prediction: New Insights into Satellite-Based Forage Crop Monitoring" Remote Sensing 16, no. 5: 734. https://doi.org/10.3390/rs16050734
APA StyleChen, J., Yu, T., Cherney, J. H., & Zhang, Z. (2024). Optimal Integration of Optical and SAR Data for Improving Alfalfa Yield and Quality Traits Prediction: New Insights into Satellite-Based Forage Crop Monitoring. Remote Sensing, 16(5), 734. https://doi.org/10.3390/rs16050734