Analysis and Quantification of the Distribution of Marabou (Dichrostachys cinerea (L.) Wight & Arn.) in Valle de los Ingenios, Cuba: A Remote Sensing Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Data Source
2.2.2. Data Preprocessing
2.2.3. Harmonic Curve Development
2.2.4. Field Data
2.2.5. Classification Algorithm
2.2.6. Workflow Overview
2.2.7. Temporal Considerations
2.2.8. Code Accessibility
3. Results
3.1. Valley Mapping at an Elevation Threshold of 100 m
3.2. Harmonic Curves
3.3. Confusion Matrix
3.4. Coverage Maps and Data
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Original Field Sampling Sheets
Appendix B. Javascript Code Used in Google Earth Engine Code Editor
. |
//test l8 no clouds |
function maskL8sr(image) { |
// Bits 3 and 5 are cloud shadow and cloud, respectively. |
var cloudShadowBitMask = (1 << 3); |
var cloudsBitMask = (1 << 5); |
// Get the pixel QA band. |
var qa = image.select(‘pixel_qa’); |
// Both flags should be set to zero, indicating clear conditions. |
var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0) |
.and(qa.bitwiseAnd(cloudsBitMask).eq(0)); |
return image.updateMask(mask); |
} |
// Load Landsat 8 data |
var l7 = ee.ImageCollection(‘LANDSAT/LE07/C01/T1_SR’); |
var l5 = ee.ImageCollection(‘LANDSAT/LT05/C01/T1_SR’); |
var l8 = ee.ImageCollection(‘LANDSAT/LC08/C01/T1_SR’); |
var merge = l7.merge(l5); |
//Reference date with ground data for the classification |
// Collection with all year data |
var start = ‘2014-01-01’; |
var end = ‘2014-12-31’; |
//landsat collection es la escena de referencia |
var landsatCollection = merge |
.filterDate(start, end) |
.map(maskL8sr) |
.filterBounds(valleIngenios); |
//.clip(valleIngenios); |
// Median of the optical bands for the same year. Reference data |
var l7_bi_2010 = merge |
.filterDate(start, end) |
.map(maskL8sr) |
.filterBounds(valleIngenios) |
.median() |
.select([‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B7’]) |
.rename([‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]) |
.float(); |
var l7_bi_2008 = merge |
.filterDate(‘2010-01-01’, ‘2011-12-31’) |
.map(maskL8sr) |
.filterBounds(valleIngenios) |
.median() |
.select([‘B1’, ‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B7’]) |
.rename([‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’]) |
.float(); |
// Set the region of interest to a point. |
var roi = ee.Geometry.Point([-79.937723, 21.828586]); |
// The dependent variable we are modeling. |
var dependent = ‘NDVI’; |
// The number of cycles per year to model. |
var harmonics = 1; |
// Make a list of harmonic frequencies to model. |
// These also serve as band name suffixes. |
var harmonicFrequencies = ee.List.sequence(1, harmonics); |
// Function to get a sequence of band names for harmonic terms. |
var constructBandNames = function(base, list) { |
return ee.List(list).map(function(i) { |
return ee.String(base).cat(ee.Number(i).int()); |
}); |
}; |
// Construct lists of names for the harmonic terms. |
var cosNames = constructBandNames(‘cos_’, harmonicFrequencies); |
var sinNames = constructBandNames(‘sin_’, harmonicFrequencies); |
// Independent variables. |
var independents = ee.List([‘constant’, ‘t’]) |
.cat(cosNames).cat(sinNames); |
// Function to add an NDVI band, the dependent variable. |
var addNDVI = function(image) { |
return image |
.addBands(image.normalizedDifference([‘B4’, ‘B3’]) |
.rename(‘NDVI’)) |
.float(); |
}; |
// Function to add a time band. |
var addDependents = function(image) { |
// Compute time in fractional years since the epoch. |
var years = image.date().difference(‘1970-01-01’, ‘year’); |
var timeRadians = ee.Image(years.multiply(2 * Math.PI)).rename(‘t’); |
var constant = ee.Image(1); |
return image.addBands(constant).addBands(timeRadians.float()); |
}; |
// Function to compute the specified number of harmonics |
// and add them as bands. Assumes the time band is present. |
var addHarmonics = function(freqs) { |
return function(image) { |
// Make an image of frequencies. |
var frequencies = ee.Image.constant(freqs); |
// This band should represent time in radians. |
var time = ee.Image(image).select(‘t’); |
// Get the cosine terms. |
var cosines = time.multiply(frequencies).cos().rename(cosNames); |
// Get the sin terms. |
var sines = time.multiply(frequencies).sin().rename(sinNames); |
return image.addBands(cosines).addBands(sines); |
}; |
}; |
// Filter to the area of interest, mask clouds, add variables. |
var harmonicLandsat = landsatCollection |
.filterBounds(roi) |
.map(addNDVI) |
.map(addDependents) |
.map(addHarmonics(harmonicFrequencies)); |
// The output of the regression reduction is a 4x1 array image. |
var harmonicTrend = harmonicLandsat |
.select(independents.add(dependent)) |
.reduce(ee.Reducer.linearRegression(independents.length(), 1)); |
// Turn the array image into a multi-band image of coefficients. |
var harmonicTrendCoefficients = harmonicTrend.select(‘coefficients’) |
.arrayProject([0]) |
.arrayFlatten([independents]); |
// Compute fitted values. |
var fittedHarmonic = harmonicLandsat.map(function(image) { |
return image.addBands( |
image.select(independents) |
.multiply(harmonicTrendCoefficients) |
.reduce(‘sum’) |
.rename(‘fitted’)); |
}); |
// Plot the fitted model and the original data at the ROI. |
print(ui.Chart.image.series(fittedHarmonic.select([‘fitted’,’NDVI’]), roi, ee.Reducer.mean(), 30) |
.setOptions({ |
title: ‘Harmonic model: original and fitted values’, |
lineWidth: 1, |
pointSize: 3, |
})); |
// Pull out the three bands we’re going to visualize. |
var sin = harmonicTrendCoefficients.select(‘sin_1’); |
var cos = harmonicTrendCoefficients.select(‘cos_1’); |
// Do some math to turn the first-order Fourier model into |
// hue, saturation, and value in the range[0,1]. |
var magnitude = cos.hypot(sin).multiply(5); |
var phase = sin.atan2(cos).unitScale(-Math.PI, Math.PI); |
var val = harmonicLandsat.select(‘NDVI’).reduce(‘median’); |
// Turn the HSV data into an RGB image and add it to the map. |
var seasonality = ee.Image.cat(phase, magnitude, val).hsvToRgb().clip(valleIngenios); |
//Map.centerObject(valleIngenios, 10); |
//Map.addLayer(seasonality, {}, ‘Seasonality’); |
//Map.addLayer(roi, {}, ‘ROI’); |
//Map.addLayer(valleIngenios,undefined,“trainning”) |
//var trainningData = Wetland.merge(Water).merge(Urban).merge(Vegetation); |
// Merge Median with Seasonality |
var l7_bi_2010_full = ee.Image.cat(l7_bi_2010, seasonality) |
.clip(valleIngenios) |
.rename([‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’, ‘phase’, ‘magnitude’, ‘ndvi’]); |
/*var visParams = { |
bands: [‘B4’, ‘B3’, ‘B2’], |
min: 0, |
max: 3000, |
gamma: 1.4, |
}; |
print(“Sesonality info”, seasonality.getInfo()) |
*/ |
//Map.addLayer(l7_bi_2010_full, visParams, ‘L72010_bi__Full’); |
//Export to Image (Drive, then) |
/*Export.image.toDrive({ |
image: seasonality, |
description: ‘Seasonality_L7_bi_2010_clip’, |
scale: 30, |
region: valleIngenios, |
fileFormat: ‘GeoTIFF’, |
crs: ‘EPSG:32617’, |
folder: ‘Cuba’ |
//maxPixels: 2000000000 |
}); |
Export.image.toDrive({ |
image: l7_bi_2010_full, |
description: ‘L7_bi_2010_Full_clip’, |
scale: 30, |
region: valleIngenios, |
fileFormat: ‘GeoTIFF’, |
crs: ‘EPSG:32617’, |
folder: ‘Cuba’ |
//maxPixels: 2000000000 |
}); |
//Export.table.toDrive({ |
//collection: trainningData, |
//description: ‘Trainning polygons test Cuba’, |
//fileFormat: ‘KML’ |
//}) |
*/ |
/************************** |
Random Forests Classification |
****************************/ |
// Train Sample Data with the ref image |
var bands = [‘B2’, ‘B3’, ‘B4’, ‘B5’, ‘B6’, ‘B7’, ‘phase’, ‘magnitude’, ‘ndvi’]; |
var input = l7_bi_2010_full.select(bands); |
var classifierTraining = input.select(bands) |
.sampleRegions({ |
collection: Polygons, |
properties: [‘Class’], |
scale: 30 |
}); |
//Classification Model |
var classifier = ee.Classifier.randomForest(10).train({ |
features: classifierTraining, |
classProperty: ‘Class’, |
inputProperties: bands |
}); |
//Classify the image |
var classified = input.select(bands).classify(classifier); |
//Land Cover Classes |
//1 = Urban; 2 = Crop; 3 = Forest; 4 = Bareland; 5 = Wetland; 6 = Water |
// Define a palette for the IGBP classification. |
var igbpPalette = [ |
‘249f06’, //caña |
‘277315’, //palma |
‘13fb04’, //ribera |
‘34fb04’, //Marabu |
‘04a5fb’, //KingGrass |
‘f12e04’, //Urban |
‘042dfb’, //Water |
‘04f1c9’, //Manglar |
‘000000’ //Shadow |
]; |
//Map.addLayer(classified, {palette: igbpPalette, min: 1, max: 9}, ‘classification’); |
/********************************** |
Accuracy Assessment |
**********************************/ |
var trainingTesting = classifierTraining.randomColumn(); |
var trainingSet = trainingTesting |
.filter(ee.Filter.lessThan(‘random’, 0.7)); |
var testingSet = trainingTesting |
.filter(ee.Filter.greaterThanOrEquals(‘random’, 0.7)); |
//Classify the testingSet and get a confusion matrix. |
var confusionMatrix = ee.ConfusionMatrix(testingSet.classify(classifier) |
.errorMatrix({ |
actual: ‘Class’, |
predicted: ‘classification’ |
})); |
print(‘Confusion matrix:’, confusionMatrix); |
print(‘Overall Accuracy:’, confusionMatrix.accuracy()); |
print(‘Producers Accuracy:’, confusionMatrix.producersAccuracy()); |
print(‘Consumers Accuracy:’, confusionMatrix.consumersAccuracy()); |
Export.image.toDrive({ |
image: classified, |
description: ‘2013_14_REF_Class’, |
scale: 30, |
region: valleIngenios, |
fileFormat: ‘GeoTIFF’, |
crs: ‘EPSG:32617’, |
folder: ‘Cuba’ |
//maxPixels: 2000000000 |
}); |
Appendix C
References
- Daly, E.Z.; Chabrerie, O.; Massol, F.; Facon, B.; Hess, M.C.M.; Tasiemski, A.; Grandjean, F.; Chauvat, M.; Viard, F.; Forey, E.; et al. A Synthesis of Biological Invasion Hypotheses Associated with the Introduction–Naturalisation–Invasion Continuum. Oikos 2023, 2023, e09645. [Google Scholar] [CrossRef]
- Kumar Rai, P.; Singh, J.S. Invasive Alien Plant Species: Their Impact on Environment, Ecosystem Services and Human Health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef] [PubMed]
- IPBES. Summary for Policymakers of the Thematic Assessment Report on Invasive Alien Species and Their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2003. [Google Scholar] [CrossRef]
- Heringer, G.; Angulo, E.; Ballesteros-Mejia, L.; Capinha, C.; Courchamp, F.; Diagne, C.; Duboscq-Carra, V.G.; Nuñez, M.A.; Zenni, R.D. The Economic Costs of Biological Invasions in Central and South America: A First Regional Assessment. NeoBiota 2021, 67, 401–426. [Google Scholar] [CrossRef]
- Sharma, G.P.; Raghubanshi, A.S.; Singh, J.S. Lantana Invasion: An Overview. Weed Biol. Manag. 2005, 5, 157–165. [Google Scholar] [CrossRef]
- Blumenthal, D.M. Interactions between Resource Availability and Enemy Release in Plant Invasion. Ecol. Lett. 2006, 9, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Pergl, J.; Hejda, M.; Schaffner, U.; Vilà, M. A Global Assessment of Invasive Plant Impacts on Resident Species, Communities and Ecosystems: The Interaction of Impact Measures, Invading Species’ Traits and Environment. Glob. Change Biol. 2012, 18, 1725–1737. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, R.; Chauhan, B.S. Understanding Crop-Weed-Fertilizer-Water Interactions and Their Implications for Weed Management in Agricultural Systems. Crop Prot. 2018, 103, 65–72. [Google Scholar] [CrossRef]
- Black, R.; Bartlett, D.M.F. Biosecurity Frameworks for Cross-Border Movement of Invasive Alien Species. Environ. Sci. Policy 2020, 105, 113–119. [Google Scholar] [CrossRef]
- Pejchar, L.; Mooney, H.A. Invasive Species, Ecosystem Services and Human Well-Being. Trends Ecol. Evol. 2009, 24, 497–504. [Google Scholar] [CrossRef]
- Colautti, R.I.; Bailey, S.A.; Van Overdijk, C.D.A.; Amundsen, K.; MacIsaac, H.J. Characterised and Projected Costs of Nonindigenous Species in Canada. Biol. Invasions 2006, 8, 45–59. [Google Scholar] [CrossRef]
- Tataridas, A.; Jabran, K.; Kanatas, P.; Oliveira, R.S.; Freitas, H.; Travlos, I. Early Detection, Herbicide Resistance Screening, and Integrated Management of Invasive Plant Species: A Review. Pest Manag. Sci. 2022, 78, 3957–3972. [Google Scholar] [CrossRef]
- Pyšek, P.; Richardson, D.M. Invasive Species, Environmental Change and Management, and Health. Annual Rev. Environ. Resour. 2010, 35, 25–55. [Google Scholar] [CrossRef]
- Germán, H.C.; Montesbravo, E.P.; Paredes Rodríguez, E.; Calas, P.B. Biologia Reproductiva de Dichrostachys Cinerea (L.) Wight & Arn. (Marabú). (I) Evaluación de Reproduccion Por Semillas. Fitosanidad 2008, 12, 39–43. [Google Scholar]
- Hernandez-Enriquez, O.; Alvarez, R.; Morelli, F.; Bastida, F.; Camacho, D.; Menendez, J. Low-Impact Chemical Weed Control Techniques in UNESCO World Heritage Sites of Cuba. Commun. Agric. Appl. Biol. Sci. 2012, 77, 387–393. [Google Scholar]
- Sinoga, J.D.R.; Noa, R.R.; Perez, D.F. An Analysis of the Spatial Colonization of Scrubland Intrusive Species in the Itabo and Guanabo Watershed, Cuba. Remote Sens. 2010, 2, 740–757. [Google Scholar] [CrossRef]
- Moreno, E.; Zabalo, A.; Gonzalez, E.; Alvarez, R.; Jimenez, V.M.; Menendez, J. Affordable Use of Satellite Imagery in Agriculture and Development Projects: Assessing the Spatial Distribution of Invasive Weeds in the UNESCO-Protected Areas of Cuba. Agriculture 2021, 11, 1057. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote Sensing Imagery in Vegetation Mapping: A Review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Chen, B.; Jin, Y.; Brown, P. Automatic Mapping of Planting Year for Tree Crops with Landsat Satellite Time Series Stacks. ISPRS J. Photogramm. Remote Sens. 2019, 151, 176–188. [Google Scholar] [CrossRef]
- Abburu, S.; Babu Golla, S. Satellite Image Classification Methods and Techniques: A Review. Int. J. Comput. Appl. 2015, 119, 20–25. [Google Scholar] [CrossRef]
- Paul, M.; Mather, M.K. Computer Processing of Remotely-Sensed Images: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Chen, B.; Tu, Y.; Song, Y.; Theobald, D.M.; Zhang, T.; Ren, Z.; Li, X.; Yang, J.; Wang, J.; Wang, X.; et al. Mapping Essential Urban Land Use Categories with Open Big Data: Results for Five Metropolitan Areas in the United States of America. ISPRS J. Photogramm. Remote Sens. 2021, 178, 203–218. [Google Scholar] [CrossRef]
- Hasmadi, I. Evaluating Supervised and Unsupervised Techniques for Land Cover Mapping Using Remote Sensing Data. Malaysian J. Soc. Sp. 2009, 5, 1–10. [Google Scholar]
- Müllerová, J.; Brundu, G.; Große-Stoltenberg, A.; Kattenborn, T.; Richardson, D.M.; Müllerová, J.; Brundu, G.; Große-Stoltenberg, A.; Kattenborn, T.; Richardson, D.M. Pattern to Process, Research to Practice: Remote Sensing of Plant Invasions. Biol. Invasions 2023, 25, 3651–3676. [Google Scholar] [CrossRef]
- Panda, S.S.; Terrill, T.H.; Mahapatra, A.K.; Kelly, B.; Morgan, E.R.; Wyk, J.A. van Site-Specific Forage Management of Sericea Lespedeza: Geospatial Technology-Based Forage Quality and Yield Enhancement Model Development. Agriculture 2020, 10, 419. [Google Scholar] [CrossRef]
- Wiens, J.A. Spatial Scaling in Ecology. Funct. Ecol. 1989, 3, 385. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis-Towards a New Paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Valjarević, A.; Milanović, M.; Valjarević, D.; Basarin, B.; Gribb, W.; Lukić, T. Geographical Information Systems and Remote Sensing Methods in the Estimation of Potential Dew Volume and Its Utilization in the United Arab Emirates. Arab. J. Geosci. 2021, 14, 1430. [Google Scholar] [CrossRef]
- Clark, M.L. Comparison of Multi-Seasonal Landsat 8, Sentinel-2 and Hyperspectral Images for Mapping Forest Alliances in Northern California. ISPRS J. Photogramm. Remote Sens. 2020, 159, 26–40. [Google Scholar] [CrossRef]
- Oreti, L.; Giuliarelli, D.; Tomao, A.; Barbati, A. Object Oriented Classification for Mapping Mixed and Pure Forest Stands Using Very-High Resolution Imagery. Remote Sens. 2021, 13, 2508. [Google Scholar] [CrossRef]
- Escambray Newspaper. Available online: https://www.escambray.cu/especiales/valle/ (accessed on 1 December 2023).
- Escambray Newspaper. Available online: https://www.escambray.cu/2013/metamorfosis-del-valle-de-san-luis-en-trinidad/ (accessed on 1 December 2023).
- GADM. Available online: https://gadm.org/ (accessed on 10 April 2022).
- Datasets. Available online: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR (accessed on 1 August 2023).
- Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Nicolau, A.P.; Dyson, K.; Bhandari, B.; Saah, D.; Clinton, N. Fitting Functions to Time Series. In Cloud-Based Remote Sensing with Google Earth Engine; Cardille, J.A., Crowley, M.A., Saah, D., Clinton, N.E., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 331–351. ISBN 978-3-031-26588-4. [Google Scholar] [CrossRef]
- USGS LP DAAC. Available online: https://lpdaac.usgs.gov/products/nasadem_hgtv001/ (accessed on 8 February 2024).
- Carreño-Conde, F.; Sipols, A.E.; Simón, C.; Mostaza-Colado, D. A Forecast Model Applied to Monitor Crops Dynamics Using Vegetation Indices (NDVI). Appl. Sci. 2021, 11, 1859. [Google Scholar] [CrossRef]
- Berveglieri, A.; Imai, N.N.; Christovam, L.E.; Galo, M.L.B.T.; Tommaselli, A.M.G.; Honkavaara, E. Analysis of Trends and Changes in the Successional Trajectories of Tropical Forest Using the Landsat NDVI Time Series. Remote Sens. Appl. Soc. Environ. 2021, 24, 100622. [Google Scholar] [CrossRef]
- Bai, B.X.; Tan, Y.M.; Wu, P. The Spatial and Temporal Availability Differences of Cloud-Free Landsat Images over Three Gorges Reservoir Area. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-3-W9, 1–8. [Google Scholar] [CrossRef]
- Li, H.; Jia, M.; Zhang, R.; Ren, Y.; Wen, X. Incorporating the Plant Phenological Trajectory into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform. Remote Sens. 2019, 11, 2479. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Datta, P.; Frey, J.; Koch, B. Mapping an Invasive Plant Spartina Alterniflora by Combining an Ensemble One-Class Classification Algorithm with a Phenological NDVI Time-Series Analysis Approach in Middle Coast of Jiangsu, China. Remote Sens. 2020, 12, 4010. [Google Scholar] [CrossRef]
- Boscutti, F.; Sigura, M.; De Simone, S.; Marini, L. Exotic Plant Invasion in Agricultural Landscapes: A Matter of Dispersal Mode and Disturbance Intensity. Appl. Veg. Sci. 2018, 21, 250–257. [Google Scholar] [CrossRef]
- Paini, D.R.; Sheppard, A.W.; Cook, D.C.; De Barro, P.J.; Worner, S.P.; Thomas, M.B. Global Threat to Agriculture from Invasive Species. Proc. Natl. Acad. Sci. USA 2016, 113, 7575–7579. [Google Scholar] [CrossRef]
- Pimentel, D.; Zuniga, R.; Morrison, D. Update on the Environmental and Economic Costs Associated with Alien-Invasive Species in the United States. Ecol. Econ. 2005, 52, 273–288. [Google Scholar] [CrossRef]
- Labonté, J.; Drolet, G.; Sylvain, J.D.; Thiffault, N.; Hébert, F.; Girard, F. Phenology-Based Mapping of an Alien Invasive Species Using Time Series of Multispectral Satellite Data: A Case-Study with Glossy Buckthorn in Québec, Canada. Remote Sens. 2020, 12, 922. [Google Scholar] [CrossRef]
- César De Sá, N.; Carvalho, S.; Castro, P.; Marchante, E.; Marchante, H. Using Landsat Time Series to Understand How Management and Disturbances Influence the Expansion of an Invasive Tree. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3243–3253. [Google Scholar] [CrossRef]
- Evangelista, P.H.; Stohlgren, T.J.; Morisette, J.T.; Kumar, S. Mapping Invasive Tamarisk (Tamarix): A Comparison of Single-Scene and Time-Series Analyses of Remotely Sensed Data. Remote Sens. 2009, 1, 519–533. [Google Scholar] [CrossRef]
Parcel Number | UTM Coordinate (m) WGS_1984_17_N | Area (m2) | Vegetation |
---|---|---|---|
1 | X: 604,902 Y: 2,413,342 | 1800 | Sugarcane |
2 | X: 605,243 Y: 2,413,431 | 900 | Cassava |
3 | X: 605,129 Y: 2,413,855 | 1350 | Pasture, aroma and marabou |
4 | X: 604,902 Y: 2,413,342 | 1800 | Sugarcane |
5 | X: 606,551 Y: 2,413,952 | 5100 | Banana |
6 | X: 606,354 Y: 2,413,808 | 3500 | Sugarcane |
7 | X: 615,644 Y: 2,418,961 | 2100 | Sugarcane |
8 | X: 616,699 Y: 2,419,043 | 15,600 | Banana |
9 | X: 616,812 Y: 2,418,537 | 39,000 | Banana |
10 | X: 617,175 Y: 2,417,453 | 5250 | Albizia and marabou |
11 | X: 615,644 Y: 2,418,961 | 2100 | Guava and mango |
12 | X: 615,581 Y: 2,417,194 | 7200 | King grass |
13 | X: 614,521 Y: 2,414,653 | 10,000 | King grass |
14 | X: 615,151 Y: 2,413,776 | 62,700 | Marabou, albizia, guaban, guarana |
15 | X: 614,123 Y: 2,416,299 | 43,700 | Marabou, aroma |
16 | X: 614,911 Y: 2,414,276 | 22,200 | Marabou, aroma |
17 | X: 615,137 Y: 2,414,448 | 10,500 | Marabou, aroma |
18 | X: 608,456 Y: 2,415,134 | 28,000 | Marabou, aroma |
19 | X: 608,207 Y: 2,414,556 | 24,000 | Eucalyptus |
20 | X: 611,645 Y: 2,415,412 | 85,800 | Marabou, albizia, aroma |
21 | X: 610,162 Y: 2,415,228 | 18,000 | Marabou, guin de bandera |
22 | X: 607,502 Y: 2,414,784 | 36,975 | Marabou |
23 | X: 607,502 Y: 2,413,310 | 24,000 | Marabou and riparian species |
24 | X: 614,138 Y: 2,414,879 | 13,500 | Marabou, guacima |
25 | X: 614,143 Y: 2,414,625 | 12,600 | Marabou, aroma |
26 | X: 613,737 Y: 2,415,050 | 56,700 | Marabou |
27 | X: 607,813 Y: 2,415,031 | 9000 | Riparian vegetation with some marabou along the edges |
28 | X: 607,833 Y: 2,413,688 | 18,000 | Marabou, aroma, guarana, palma |
29 | X: 606,533 Y: 2,412,695 | 2750 | Palm, almacigo, yagruma, guacima |
Class | Mar | Pal | Rib | Cane | King | Urb | Water | Mang | Sum |
---|---|---|---|---|---|---|---|---|---|
Mar | 56 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 57 |
Pal | 0 | 9 | 0 | 0 | 1 | 0 | 0 | 0 | 10 |
Rib | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 3 |
Cane | 0 | 0 | 1 | 17 | 0 | 0 | 0 | 1 | 19 |
King | 1 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 5 |
Urb | 0 | 0 | 0 | 0 | 0 | 34 | 0 | 2 | 36 |
Water | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 5 |
Mang | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Sum | 57 | 10 | 3 | 17 | 5 | 34 | 4 | 6 | 136 |
Year | Hectares |
---|---|
2002 | 7908.1 |
2004 | 5067.5 |
2006 | 14,376.8 |
2008 | 14,132.2 |
2010 | 12,326.2 |
2012 | 12,945.2 |
2014 | 12,670.7 |
2015 | 12,796.1 |
2016 | 10,330.2 |
2017 | 8772.5 |
2018 | 9329.7 |
2019 | 12,675.0 |
2020 | 15,657.0 |
2021 | 15,640.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno, E.; Gonzalez, E.; Alvarez, R.; Menendez, J. Analysis and Quantification of the Distribution of Marabou (Dichrostachys cinerea (L.) Wight & Arn.) in Valle de los Ingenios, Cuba: A Remote Sensing Approach. Remote Sens. 2024, 16, 752. https://doi.org/10.3390/rs16050752
Moreno E, Gonzalez E, Alvarez R, Menendez J. Analysis and Quantification of the Distribution of Marabou (Dichrostachys cinerea (L.) Wight & Arn.) in Valle de los Ingenios, Cuba: A Remote Sensing Approach. Remote Sensing. 2024; 16(5):752. https://doi.org/10.3390/rs16050752
Chicago/Turabian StyleMoreno, Eduardo, Encarnación Gonzalez, Reinaldo Alvarez, and Julio Menendez. 2024. "Analysis and Quantification of the Distribution of Marabou (Dichrostachys cinerea (L.) Wight & Arn.) in Valle de los Ingenios, Cuba: A Remote Sensing Approach" Remote Sensing 16, no. 5: 752. https://doi.org/10.3390/rs16050752
APA StyleMoreno, E., Gonzalez, E., Alvarez, R., & Menendez, J. (2024). Analysis and Quantification of the Distribution of Marabou (Dichrostachys cinerea (L.) Wight & Arn.) in Valle de los Ingenios, Cuba: A Remote Sensing Approach. Remote Sensing, 16(5), 752. https://doi.org/10.3390/rs16050752