Monitoring and Quantifying Soil Erosion and Sedimentation Rates in Centimeter Accuracy Using UAV-Photogrammetry, GNSS, and t-LiDAR in a Post-Fire Setting
Abstract
:1. Introduction
2. Study Area and Methodology
2.1. Study Area
2.2. Data and Measurements
2.2.1. Data Collection Timeframe
2.2.2. The t-LiDAR Surveys
2.2.3. GPR Data Collection
2.2.4. UAV Image Acquisition and Processing
2.2.5. The GNSS Survey
2.2.6. Point Cloud Processing
3. Results
3.1. Point Cloud Analysis
3.1.1. The 2015–2016 t-LiDAR analysis
3.1.2. The 2017–2021 Point Clouds Analyses
3.1.3. Error Assessment
3.2. The GPR Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dregne, H.E. Land Degradation in the Drylands. Arid. Land Res. Manag. 2002, 16, 99–132. [Google Scholar] [CrossRef]
- Campo, J.; Andreu, V.; Gimeno-García, E.; González, O.; Rubio, J.L.; Campo, J.; Andreu, V.; Gimeno-García, E.; González, O.; Rubio, J.L. Occurrence of Soil Erosion after Repeated Experimental Fires in a Mediterranean Environment. Geomorphology 2006, 82, 376–387. [Google Scholar] [CrossRef]
- Sougnez, N.; van Wesemael, B.; Vanacker, V. Low Erosion Rates Measured for Steep, Sparsely Vegetated Catchments in Southeast Spain. CATENA 2011, 84, 1–11. [Google Scholar] [CrossRef]
- White, S.; Garcia-Ruiz, J. Extreme Erosional Events and Their Role in Mountain Areas of Northern Spain. J. Hum. Environ. 1998, 27, 300–305. [Google Scholar]
- García-Ruiz, J.M.; Regüés, D.; Alvera, B.; Lana-Renault, N.; Serrano-Muela, P.; Nadal-Romero, E.; Navas, A.; Latron, J.; Martí-Bono, C.; Arnáez, J. Flood Generation and Sediment Transport in Experimental Catchments Affected by Land Use Changes in the Central Pyrenees. J. Hydrol. 2008, 356, 245–260. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Schmidt, K.M.; Greenberg, H.M.; Dietrich, W.E. Forest Clearing and Regional Landsliding. Geology 2000, 28, 311. [Google Scholar] [CrossRef]
- Wilkinson, B.H.; McElroy, B.J. The Impact of Humans on Continental Erosion and Sedimentation. GSA Bull. 2007, 119, 140–156. [Google Scholar] [CrossRef]
- Pausas, J.G. Changes in Fire and Climate in the Eastern Iberian Peninsula (Mediterranean Basin). Clim. Chang. 2004, 63, 337–350. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-Wildfire Soil Erosion in the Mediterranean: Review and Future Research Directions. Earth Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Debano, L.F. The Effect of Fire on Soil Properties. In Proceedings of the Management and Productivity of Western-montane Forest Soils, Boise, ID, USA, 10–12 April 1990. [Google Scholar]
- Certini, G. Effects of Fire on Properties of Forest Soils: A Review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wittenberg, L.; Inbar, M. The Role of Fire Disturbance on Runoff and Erosion Processes—A Long-Term Approach, Mt. Carmel Case Study, Israel. Geogr. Res. 2009, 47, 46–56. [Google Scholar] [CrossRef]
- Inbar, M.; Tamir, M.; Wittenberg, L. Runoff and Erosion Processes after a Forest Fire in Mount Carmel, a Mediterranean Area. Geomorphology 1998, 24, 17–33. [Google Scholar] [CrossRef]
- Whelan, R. The Ecology of Fire—Developments since 1995 and Outstanding Questions. Proc. R. Soc. Qld. 2009, 115, 59–68. [Google Scholar] [CrossRef]
- Debano, L.F. The Role of Fire and Soil Heating on Water Repellency in Wildland Environments: A Review. J. Hydrol. 2000, 231–232, 195–206. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Waldrop, T.A. A Comparison of Surface Runoff and Sediment Yields from Low-Severity and High-Severity Site Preparation Burns. Water Resour. Bull. 1994, 30, 27–34. [Google Scholar] [CrossRef]
- Benavides-Solorio, J.D.D.; MacDonald, L.H. Measurement and Prediction of Post-Fire Erosion at the Hillslope Scale, Colorado Front Range. Int. J. Wildland Fire 2005, 14, 457–474. [Google Scholar] [CrossRef]
- Wagenbrenner, J.W.; MacDonald, L.H.; Rough, D. Effectiveness of Three Post-Fire Rehabilitation Treatments in the Colorado Front Range. Hydrol. Process. 2006, 20, 2989–3006. [Google Scholar] [CrossRef]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully Erosion and Environmental Change: Importance and Research Needs. CATENA 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Renard, K.; Foster, G.; Weessies, G.; McCool, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). In Agriculture Handbook 703; Yoder, D.C., Ed.; U.S. Department of Agriculture: Washington, DC, USA, 1997. [Google Scholar]
- Crosson, P. Will erosion threaten agricultural productivity? Environ. Sci. Policy Sustain. Dev. 1997, 39, 4–31. [Google Scholar] [CrossRef]
- Poesen, J.W.A.; Hooke, J.M. Erosion, Flooding and Channel Management in Mediterranean Environments of Southern Europe. Prog. Phys. Geogr. 1997, 21, 157–199. [Google Scholar] [CrossRef]
- Valero-Garcés, B.; Morellón, M.; Moreno, A.; Corella, J.P.; Martín-Puertas, C.; Barreiro, F.; Pérez, A.; Giralt, S.; Mata-Campo, M.P. Lacustrine Carbonates of Iberian Karst Lakes: Sources, Processes and Depositional Environments. Sediment. Geol. 2014, 299, 1–29. [Google Scholar] [CrossRef]
- Romero-Díaz, A.; Marín-Sanleandro, P.; Ortiz-Silla, R. Loss of Soil Fertility Estimated from Sediment Trapped in Check Dams. South-Eastern Spain. CATENA 2012, 99, 42–53. [Google Scholar] [CrossRef]
- Verstraeten, G. Estimating Trap Efficiency of Small Reservois and Ponds: Methods and Implications for the Assessment of Sediment Yield. Prog. Phys. Geogr. 2000, 24, 219–251. [Google Scholar] [CrossRef]
- Bazzoffi, P.; Baldassarre, G.; Vacca, S. Validation of PISA2 Model for Automatic Assessment of Reservoir Sedimentation. In Proceedings of the International Conference on Reservoir Sedimentation; Colorado State University: Fort Collins, CO, USA, 1996; pp. 519–528. [Google Scholar]
- Lloyd, S.; Bishop, P.; Reinfelds, I. Shoreline Erosion: A Cautionary Note in Using Small Farm Dams to Determine Catchment Erosion Rates. Earth Surf. Process. Landf. J. Br. Geomorphol. Group 1998, 23, 905–912. [Google Scholar] [CrossRef]
- Zhao, G.; Klik, A.; Mu, X.; Wang, F.; Gao, P.; Sun, W. Sediment Yield Estimation in a Small Watershed on the Northern Loess Plateau, China. Geomorphology 2015, 241, 343–352. [Google Scholar] [CrossRef]
- Eltner, A.; Mulsow, C.; Maas, H.-G. Quantitative measurement of soil erosion from tls and uav data. SPRS—Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2013, XL-1/W2, 119–124. [Google Scholar] [CrossRef]
- Li, Y.; Lu, X.; Washington-Allen, R.A.; Li, Y.; Ciampalini, A.; Li, Y.; Lu, X.; Washington-Allen, R.A.; Li, Y. Microtopographic Controls on Erosion and Deposition of a Rilled Hillslope in Eastern Tennessee, USA. Remote Sens. 2022, 14, 1315. [Google Scholar] [CrossRef]
- Bolkas, D.; Naberezny, B.; Jacobson, M.G. Comparison of SUAS Photogrammetry and TLS for Detecting Changes in Soil Surface Elevations Following Deep Tillage. J. Surv. Eng. 2021, 147, 04021001. [Google Scholar] [CrossRef]
- Vinci, A.; Brigante, R.; Todisco, F.; Mannocchi, F.; Radicioni, F. Measuring Rill Erosion by Laser Scanning. CATENA 2015, 124, 97–108. [Google Scholar] [CrossRef]
- Sun, L.; Wu, S.; Zhang, B.; Lei, Q. Development of Rill Erosion and Its Simulation with Cellular Automata-Rill Model in Chinese Loess Plateau. Arch. Agron. Soil Sci. 2020, 68, 823–837. [Google Scholar] [CrossRef]
- Lu, X.; Li, Y.; Washington-Allen, R.A.; Li, Y. Structural and Sedimentological Connectivity on a Rilled Hillslope. Sci. Total Environ. 2019, 655, 1479–1494. [Google Scholar] [CrossRef]
- Li, Y.; McNelis, J.J.; Washington-Allen, R.A. Quantifying Short-Term Erosion and Deposition in an Active Gully Using Terrestrial Laser Scanning: A Case Study From West Tennessee, USA. Front. Earth Sci. 2020, 8, 587999. [Google Scholar] [CrossRef]
- Perroy, R.L.; Bookhagen, B.; Asner, G.P.; Chadwick, O.A. Comparison of Gully Erosion Estimates Using Airborne and Ground-Based LiDAR on Santa Cruz Island, California. Geomorphology 2010, 118, 288–300. [Google Scholar] [CrossRef]
- Rengers, F.K.; Tucker, G.E. The Evolution of Gully Headcut Morphology: A Case Study Using Terrestrial Laser Scanning and Hydrological Monitoring. Earth Surf. Process Landf. 2015, 40, 1304–1317. [Google Scholar] [CrossRef]
- Castillo, C.; Pérez, R.; James, M.R.; Quinton, J.N.; Taguas, E.V.; Gómez, J.A. Comparing the Accuracy of Several Field Methods for Measuring Gully Erosion. Soil Sci. Soc. Am. J. 2012, 76, 1319–1332. [Google Scholar] [CrossRef]
- Taylor, R.J.; Massey, C.; Fuller, I.C.; Marden, M.; Archibald, G.; Ries, W.; Taylor, R.J.; Massey, C.; Fuller, I.C.; Marden, M.; et al. Quantifying Sediment Connectivity in an Actively Eroding Gully Complex, Waipaoa Catchment, New Zealand. Geomorphology 2018, 307, 24–37. [Google Scholar] [CrossRef]
- Domazetović, F.; Šiljeg, A.; Marić, I.; Panđa, L. A New Systematic Framework for Optimization of Multi-Temporal Terrestrial LiDAR Surveys over Complex Gully Morphology. Remote Sens. 2022, 14, 3366. [Google Scholar] [CrossRef]
- Goodwin, N.R.; Armston, J.D.; Muir, J.; Stiller, I. Monitoring Gully Change: A Comparison of Airborne and Terrestrial Laser Scanning Using a Case Study from Aratula, Queensland. Geomorphology 2017, 282, 195–208. [Google Scholar] [CrossRef]
- Magda Ramos, M.; Remondino, F. Data Fusion in Cultural Heritage—A Review. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2015, 40, 359–363. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, L.; Shen, Y.; Li, F.; Wang, Q.; Wang, R.; Lasaponara, R.; Masini, N.; Lorenzo, H.; Baghdadi, N.; et al. Tridimensional Reconstruction Applied to Cultural Heritage with the Use of Camera-Equipped UAV and Terrestrial Laser Scanner. Remote Sens. 2014, 6, 10413–10434. [Google Scholar] [CrossRef]
- Su, Y.-T.; Bethel, J.; Hu, S. Octree-Based Segmentation for Terrestrial LiDAR Point Cloud Data in Industrial Applications. ISPRS J. Photogramm. Remote Sens. 2016, 113, 59–74. [Google Scholar] [CrossRef]
- Barba, S.; Barbarella, M.; Di Benedetto, A.; Fiani, M.; Gujski, L.; Limongiello, M. Accuracy Assessment of 3D Photogrammetric Models from an Unmanned Aerial Vehicle. Drones 2019, 3, 79. [Google Scholar] [CrossRef]
- Alexiou, S.; Deligiannakis, G.; Pallikarakis, A.; Papanikolaou, I.; Psomiadis, E.; Reicherter, K. Comparing High Accuracy T-Lidar and Uav-Sfm Derived Point Clouds for Geomorphological Change Detection. ISPRS Int. J. Geoinf. 2021, 10, 367. [Google Scholar] [CrossRef]
- Alexiou, S.; Efthimiou, N.; Karamesouti, M.; Papanikolaou, I.; Psomiadis, E.; Charizopoulos, N. Measuring Annual Sedimentation through High Accuracy UAV-Photogrammetry Data and Comparison with RUSLE and PESERA Erosion Models. Remote Sens. 2023, 15, 1339. [Google Scholar] [CrossRef]
- Bird, S.; Hogan, D.; Schwab, J. Photogrammetric Monitoring of Small Streams under a Riparian Forest Canopy. Earth Surf. Process Landf. 2010, 35, 952–970. [Google Scholar] [CrossRef]
- Lane, S.N.; James, T.D.; Crowell, M.D. Application of Digital Photogrammetry to Complex Topography for Geomorphological Research. Photogramm. Rec. 2000, 16, 793–821. [Google Scholar] [CrossRef]
- Chandler, J.; Ashmore, P.; Paola, C.; Gooch, M.; Varkaris, F. Monitoring River-Channel Change Using Terrestrial Oblique Digital Imagery and Automated Digital Photogrammetry. Ann. Assoc. Am. Geogr. 2002, 92, 631–644. [Google Scholar] [CrossRef]
- Brasington, J.; Smart, R.M.A. Close Range Digital Photogrammetric Analysis of Experimental Drainage Basin Evolution. Earth Surf. Process Landf. 2003, 28, 231–247. [Google Scholar] [CrossRef]
- Barker, R.; Dixon, L.; Hooke, J. Use of Terrestrial Photogrammetry for Monitoring and Measuring Bank Erosion. Earth Surf. Process Landf. 1997, 22, 1217–1227. [Google Scholar] [CrossRef]
- Pyle, C.J.; Richards, K.S.; Chandler, J.H. Digital Photogrammetric Monitoring of River Bank Erosion. Photogramm. Rec. 1997, 15, 753–764. [Google Scholar] [CrossRef]
- Marzolff, I.; Poesen, J. The Potential of 3D Gully Monitoring with GIS Using High-Resolution Aerial Photography and a Digital Photogrammetry System. Geomorphology 2009, 111, 48–60. [Google Scholar] [CrossRef]
- Betts, H.D.; DeRose, R.C. Digital Elevation Models as a Tool for Monitoring and Measuring Gully Erosion. Int. J. Appl. Earth Obs. Geoinf. 1999, 1, 91–101. [Google Scholar] [CrossRef]
- Wang, R.; Sun, H.; Yang, J.; Zhang, S.; Fu, H.; Wang, N.; Liu, Q. Quantitative Evaluation of Gully Erosion Using Multitemporal UAV Data in the Southern Black Soil Region of Northeast China: A Case Study. Remote Sens. 2022, 14, 1479. [Google Scholar] [CrossRef]
- Cândido, B.M.; Quinton, J.N.; James, M.R.; Silva, M.L.N.; de Carvalho, T.S.; de Lima, W.; Beniaich, A.; Eltner, A. High-Resolution Monitoring of Diffuse (Sheet or Interrill) Erosion Using Structure-from-Motion. Geoderma 2020, 375, 114477. [Google Scholar] [CrossRef]
- Rossi, G.; Luca Tanteri, I.; Tofani, V.; Vannocci, P.; Moretti, S.; Casagli, N. Multitemporal UAV Surveys for Landslide Mapping and Characterization. Landslides 2018, 15, 1045–1052. [Google Scholar] [CrossRef]
- D’Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.B. Unmanned Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco. Remote Sens. 2012, 4, 3390–3416. [Google Scholar] [CrossRef]
- Hamshaw, S.D.; Engel, T.; Rizzo, D.M.; O’Neil-Dunne, J.; Dewoolkar, M.M. Application of Unmanned Aircraft System (UAS) for Monitoring Bank Erosion along River Corridors. Geomat. Nat. Hazards Risk 2019, 10, 1285–1305. [Google Scholar] [CrossRef]
- Hayakawa, Y.S.; Obanawa, H. Volumetric Change Detection in Bedrock Coastal Cliffs Using Terrestrial Laser Scanning and UAS-Based SfM. Sensors 2020, 20, 3403. [Google Scholar] [CrossRef] [PubMed]
- Neugirg, F.; Kaiser, A.; Huber, A.; Heckmann, T.; Schindewolf, M.; Schmidt, J.; Becht, M.; Haas, F. Using Terrestrial LiDAR Data to Analyse Morphodynamics on Steep Unvegetated Slopes Driven by Different Geomorphic Processes. CATENA 2016, 142, 269–280. [Google Scholar] [CrossRef]
- Kim, J.; Kim, I.; Ha, E.; Choi, B. UAV Photogrammetry for Soil Surface Deformation Detection in a Timber Harvesting Area, South Korea. Forests 2023, 14, 980. [Google Scholar] [CrossRef]
- Deligiannakis, G.; Pallikarakis, A.; Papanikolaou, I.; Alexiou, S.; Reicherter, K. Detecting and Monitoring Early Post-Fire Sliding Phenomena Using Uav–Sfm Photogrammetry and t-Lidar-Derived Point Clouds. Fire 2021, 4, 87. [Google Scholar] [CrossRef]
- Mavroulis, S.; Vassilakis, E.; Diakakis, M.; Konsolaki, A.; Kaviris, G.; Kotsi, E.; Kapetanidis, V.; Sakkas, V.; Alexopoulos, J.D.; Lekkas, E.; et al. The Use of Innovative Techniques for Management of High-Risk Coastal Areas, Mitigation of Earthquake-Triggered Landslide Risk and Responsible Coastal Development. Appl. Sci. 2022, 12, 2193. [Google Scholar] [CrossRef]
- Haneberg, W.C. Using Close Range Terrestrial Digital Photogrammetry for 3-D Rock Slope Modeling and Discontinuity Mapping in the United States. Bull. Eng. Geol. Environ. 2008, 67, 457–469. [Google Scholar] [CrossRef]
- Castellazzi, G.; D’Altri, A.M.; Bitelli, G.; Selvaggi, I.; Lambertini, A. From Laser Scanning to Finite Element Analysis of Complex Buildings by Using a Semi-Automatic Procedure. Sensors 2015, 15, 18360–18380. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in Landslide Investigations: A Review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef]
- Abellán, A.; Oppikofer, T.; Jaboyedoff, M.; Rosser, N.J.; Lim, M.; Lato, M.J. Terrestrial Laser Scanning of Rock Slope Instabilities. Earth Surf. Process Landf. 2014, 39, 80–97. [Google Scholar] [CrossRef]
- Eltner, A.; Schneider, D. Analysis of Different Methods for 3D Reconstruction of Natural Surfaces from Parallel-Axes UAV Images. Photogramm. Rec. 2015, 30, 279–299. [Google Scholar] [CrossRef]
- Anderson, K.; Westoby, M.J.; James, M.R. Low-Budget Topographic Surveying Comes of Age: Structure from Motion Photogrammetry in Geography and the Geosciences. Prog. Phys. Geogr. 2019, 43, 163–173. [Google Scholar] [CrossRef]
- Blanch, X.; Eltner, A.; Guinau, M.; Abellan, A. Multi-Epoch and Multi-Imagery (MEMI) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras. Remote Sens. 2021, 13, 1460. [Google Scholar] [CrossRef]
- Vassilakis, E.; Konsolaki, A.; Petrakis, S.; Kotsi, E.; Fillis, C.; Lozios, S.; Lekkas, E. 4D Point Cloud Analysis of the September 2020 Medicane Impact on Myrtos Beach in Cephalonia, Greece. In Proceedings of the 5th Joint International Symposium on Deformation Monitoring (JISDM), Valencia, Spain, 20–22 June 2022. [Google Scholar]
- Castagnetti, C.; Bertacchini, E.; Corsini, A.; Rivola, R. A Reliable Methodology for Monitoring Unstable Slopes: The Multi-Platform and Multi-Sensor Approach. In Proceedings of the SPIE, Earth Resources and Environmental Remote Sensing/GIS Applications V, Amsterdam, The Netherlands, 23–25 September 2014; Volume 9245, p. 92450J. [Google Scholar] [CrossRef]
- Kyriou, A.; Nikolakopoulos, K.; Koukouvelas, I.; Lampropoulou, P. Repeated UAV Campaigns, GNSS Measurements, GIS, and Petrographic Analyses for Landslide Mapping and Monitoring. Minerals 2021, 11, 300. [Google Scholar] [CrossRef]
- Gili, J.A.; Corominas, J.; Rius, J. Using Global Positioning System Techniques in Landslide Monitoring. Eng. Geol. 2000, 55, 167–192. [Google Scholar] [CrossRef]
- Mantovani, M.; Bossi, G.; Dykes, A.P.; Pasuto, A.; Soldati, M.; Devoto, S. Coupling Long-Term GNSS Monitoring and Numerical Modelling of Lateral Spreading for Hazard Assessment Purposes. Eng. Geol. 2022, 296, 106466. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.; Kavoura, K.; Depountis, N.; Kyriou, A.; Argyropoulos, N.; Koukouvelas, I.; Sabatakakis, N. Preliminary Results from Active Landslide Monitoring Using Multidisciplinary Surveys. Eur. J. Remote Sens. 2017, 50, 280–299. [Google Scholar] [CrossRef]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D Comparison of Complex Topography with Terrestrial Laser Scanner: Application to the Rangitikei Canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef]
- Kharroubi, A.; Poux, F.; Ballouch, Z.; Hajji, R.; Billen, R. Three Dimensional Change Detection Using Point Clouds: A Review. Geomatics 2022, 2, 457–485. [Google Scholar] [CrossRef]
- Roşca, S.; Suomalainen, J.; Bartholomeus, H.; Herold, M. Comparing Terrestrial Laser Scanning and Unmanned Aerial Vehicle Structure from Motion to Assess Top of Canopy Structure in Tropical Forests. Interface Focus. 2018, 8, 20170038. [Google Scholar] [CrossRef]
- Stumpf, A.; Malet, J.P.; Allemand, P.; Pierrot-Deseilligny, M.; Skupinski, G. Ground-Based Multi-View Photogrammetry for the Monitoring of Landslide Deformation and Erosion. Geomorphology 2015, 231, 130–145. [Google Scholar] [CrossRef]
- Cao, L.; Liu, H.; Fu, X.; Zhang, Z.; Shen, X.; Ruan, H. Comparison of UAV LiDAR and Digital Aerial Photogrammetry Point Clouds for Estimating Forest Structural Attributes in Subtropical Planted Forests. Forests 2019, 10, 145. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for Uncertainty in DEMs from Repeat Topographic Surveys: Improved Sediment Budgets. Earth Surf. Process Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Williams, R. DEMs of Difference.Geomorphol.Tech. Geomorphol. Tech. 2012, 2, 1–17. [Google Scholar]
- Okyay, U.; Telling, J.; Glennie, C.L.; Dietrich, W.E. Airborne Lidar Change Detection: An Overview of Earth Sciences Applications. Earth Sci. Rev. 2019, 198, 102929. [Google Scholar] [CrossRef]
- Kakavas, M.P.; Nikolakopoulos, K.G.; Havenith, H.-B.; Martinez-Frias, J. Digital Elevation Models of Rockfalls and Landslides: A Review and Meta-Analysis. Geosciences 2021, 11, 256. [Google Scholar] [CrossRef]
- Lissak, C.; Bartsch, A.; De Michele, M.; Gomez, C.; Maquaire, O.; Raucoules, D.; Roulland, T. Remote Sensing for Assessing Landslides and Associated Hazards. Surv. Geophys. 2020, 41, 1391–1435. [Google Scholar] [CrossRef]
- Abellan, A.; Derron, M.-H.; Jaboyedoff, M.; Derron@unil, M.-H.; Ch, M.-H.D.; Ch, M.J. “Use of 3D Point Clouds in Geohazards” Special Issue: Current Challenges and Future Trends. Remote Sens. 2016, 8, 130. [Google Scholar] [CrossRef]
- Parenti, C.; Rossi, P.; Mancini, F.; Scorpio, V.; Grassi, F.; Ciccarese, G.; Lugli, F.; Soldati, M. Multitemporal Analysis of Slow-Moving Landslides and Channel Dynamics through Integrated Remote Sensing and In Situ Techniques. Remote Sens. 2023, 15, 3563. [Google Scholar] [CrossRef]
- Arza-García, M.; Gonçalves, J.A.; Ferreira Pinto, V.; Bastos, G. On-Site Stability Assessment of Rubble Mound Breakwaters Using Unmanned Aerial Vehicle-Based Photogrammetry and Random Sample Consensus. Remote Sens. 2024, 16, 331. [Google Scholar] [CrossRef]
- Keeley, J.E.; Keeley, J.E. Fire Intensity, Fire Severity and Burn Severity: A Brief Review and Suggested Usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Chen, X.; Vogelmann, J.E.; Rollins, M.; Ohlen, D.; Key, C.H.; Yang, L.; Huang, C.; Shi, H. Detecting Post-Fire Burn Severity and Vegetation Recovery Using Multitemporal Remote Sensing Spectral Indices and Field-Collected Composite Burn Index Data in a Ponderosa Pine Forest. Int. J. Remote Sens. 2011, 32, 7905–7927. [Google Scholar] [CrossRef]
- Ireland, G.; Petropoulos, G.P. Exploring the Relationships between Post-Fire Vegetation Regeneration Dynamics, Topography and Burn Severity: A Case Study from the Montane Cordillera Ecozones of Western Canada. Appl. Geogr. 2015, 56, 232–248. [Google Scholar] [CrossRef]
- Mallinis, G.; Mitsopoulos, I.; Chrysafi, I. Evaluating and Comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) Spectral Indices for Estimating Fire Severity in a Mediterranean Pine Ecosystem of Greece. GIScience Remote Sens. 2017, 55, 1–18. [Google Scholar] [CrossRef]
- Papanikolaou, D.I. The Geology of Greece; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-60730-2. [Google Scholar]
- Latsoudas Ch. Geological Map “Koropi-Plaka”, 1:50,000; eagme.gr: 2003.
- Kehrle, V.C. Erosional Consequences of Forest Fires in Attica Region (Central Greece)—Using GPR to Validate Erosion Rates from Check Dam Infill; RWTH: Aachen, Germany, 2016. [Google Scholar]
- Conyers, L.B. Ground Penetrating Radar for Archaelogy; Altamira Press: Lanham, MD, USA, 2004. [Google Scholar]
- Neal, A. Ground-Penetrating Radar and Its Use in Sedimentology: Principles, Problems and Progress. Earth Sci. Rev. 2004, 66, 261–330. [Google Scholar] [CrossRef]
- Jaud, M.; Passot, S.; Allemand, P.; Le Dantec, N.; Grandjean, P.; Delacourt, C. Suggestions to Limit Geometric Distortions in the Reconstruction of Linear Coastal Landforms by SfM Photogrammetry with PhotoScan® and MicMac® for UAV Surveys with Restricted GCPs Pattern. Drones 2018, 3, 2. [Google Scholar] [CrossRef]
- Taddia, Y.; Corbau, C.; Zambello, E.; Pellegrinelli, A. UAVs for Structure-from-Motion Coastal Monitoring: A Case Study to Assess the Evolution of Embryo Dunes over a Two-Year Time Frame in the Po River Delta, Italy. Sensors 2019, 19, 1717. [Google Scholar] [CrossRef] [PubMed]
- Can, M.; Çalışır, E.; Akpınar, A. Spatio-Temporal Changes in Downstream River Bed during a Dam Construction. KSCE J. Civ. Eng. 2022, 26, 2160–2173. [Google Scholar] [CrossRef]
- Gelagay, H.S.; Minale, A.S. Soil Loss Estimation Using GIS and Remote Sensing Techniques: A Case of Koga Watershed, Northwestern Ethiopia. Int. Soil Water Conserv. Res. 2016, 4, 126–136. [Google Scholar] [CrossRef]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Sahoo, S. Evaluation of Soil Loss Estimation Using the RUSLE Model and SCS-CN Method in Hillslope Mining Areas. Int. Soil Water Conserv. Res. 2018, 6, 31–42. [Google Scholar] [CrossRef]
- Lu, X.; Li, Y.; Washington-Allen, R.A.; Li, Y.; Li, H.; Hu, Q. The Effect of Grid Size on the Quantification of Erosion, Deposition, and Rill Network. Int. Soil Water Conserv. Res. 2017, 5, 241–251. [Google Scholar] [CrossRef]
- Dai, W.; Yang, X.; Na, J.; Li, J.; Brus, D.; Xiong, L.; Tang, G.; Huang, X. Effects of DEM Resolution on the Accuracy of Gully Maps in Loess Hilly Areas. CATENA 2019, 177, 114–125. [Google Scholar] [CrossRef]
- Monserrat, O.; Crosetto, M. Deformation Measurement Using Terrestrial Laser Scanning Data and Least Squares 3D Surface Matching. ISPRS J. Photogramm. Remote Sens. 2008, 63, 142–154. [Google Scholar] [CrossRef]
- Sepuru, T.; Dube, T. An appraisal on the progress of remote sensing applications in soil erosion mapping and monitoring. Remote Sens. Appl. Soc. Environ. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- LI, Y.; Bai, X.; Tian, Y.; Luo, G. Review and Future Research Directions about Major Monitoring Method of Soil Erosion. IOP Conf. Ser. Earth Env. Sci. 2017, 63, 012042. [Google Scholar] [CrossRef]
- Xie, F.; Zhao, G.; Mu, X.; Tian, P.; Gao, P.; Sun, W. Sediment Yield in Dam-Controlled Watersheds in the Pisha Sandstone Region on the Northern Loess Plateau, China. Land 2021, 10, 1264. [Google Scholar] [CrossRef]
- McGregor, D. Desertification: Exploding the Myth, D.S.G. Thomas and N. J. Middleton. Wiley, Chichester, 1994. ISBN 0 471 94815 2, £32.50 (Hardback), Xiii + 194 Pp. Land Degrad Dev. 1995, 6, 69–70. [Google Scholar] [CrossRef]
- Scott, D.; Versfeld, D.B.; Lesch, W. Erosion and Sediment Yield in Relation to Afforestation and Fire in the Mountains of the Western Cape Province, South Africa. S. Afr. Geogr. J. 1998, 80, 52–59. [Google Scholar] [CrossRef]
- García-Comendador, J.; Martínez-Carreras, N.; Fortesa, J.; Borràs, A.; Calsamiglia, A.; Estrany, J. Analysis of Post-Fire Suspended Sediment Sources by Using Colour Parameters. Geoderma 2020, 379, 114638. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the Soil Erosion Cover-Management Factor at the European Scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- González-Romero, J.; López-Vicente, M.; Gómez-Sánchez, E.; Peña-Molina, E.; Galletero, P.; Plaza-Álvarez, P.; Fajardo-Cantos, A.; Moya, D.; De las Heras, J.; Lucas-Borja, M.E. Post-Fire Management Effects on Hillslope-Stream Sediment Connectivity in a Mediterranean Forest Ecosystem. J. Environ. Manag. 2022, 316, 115212. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.; Southwell, D.; Gallagher, R.V.; Raadik, T.A.; Whiterod, N.S.; Lintermans, M.; Sheridan, G.; Nyman, P.; Suárez-Castro, A.F.; Marsh, J.; et al. Modelling the Spatial Extent of Post-Fire Sedimentation Threat to Estimate the Impacts of Fire on Waterways and Aquatic Species. Divers. Distrib. 2022, 28, 2429–2442. [Google Scholar] [CrossRef]
- Castillo, C.; Gómez, J.A. A Century of Gully Erosion Research: Urgency, Complexity and Study Approaches. Earth Sci. Rev. 2016, 160, 300–319. [Google Scholar] [CrossRef]
- Andaru, R.; Cahyono, B.K.; Riyadi, G.; Istarno; Djurdjani; Ramadhan, G.R.; Tuntas, S. The Combination of Terrestrial Lidar and UAV Photogrammetry for Interactive Architectural Heritage Visualization Using Unity 3D Game Engine. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2019, 42, 39–44. [Google Scholar] [CrossRef]
- Mayr, A.; Rutzinger, M.; Bremer, M.; Oude Elberink, S.; Stumpf, F.; Geitner, C. Object-based classification of terrestrial laser scanning point clouds for landslide monitoring. Photogram. Rec. 2017, 32, 377–397. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Watson, C. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SFM) Point Clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef]
- Woodget, A.S.; Austrums, R. Subaerial Gravel Size Measurement Using Topographic Data Derived from a UAV-SfM Approach. Earth Surf. Process Landf. 2017, 42, 1434–1443. [Google Scholar] [CrossRef]
- Vassilakis, E.; Konsolaki, A. Quantification of Cave Geomorphological Characteristics Based on Multi Source Point Cloud Data Interoperability. Z. Fur Geomorphol. 2022, 63, 265–277. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Long, Y.; Pang, G.; Shen, H.; Wang, L.; Yang, Q. Comparative Analysis of Gully Morphology Extraction Suitability Using Unmanned Aerial Vehicle and Google Earth Imagery. Remote Sens. 2023, 15, 4302. [Google Scholar] [CrossRef]
- Kermarrec, G.; Yang, Z.; Czerwonka-Schröder, D. Classification of Terrestrial Laser Scanner Point Clouds: A Comparison of Methods for Landslide Monitoring from Mathematical Surface Approximation. Remote Sens. 2022, 14, 5099. [Google Scholar] [CrossRef]
- Anders, K.; Winiwarter, L.; Mara, H.; Lindenbergh, R.; Vos, S.E.; Höfle, B. Fully Automatic Spatiotemporal Segmentation of 3D LiDAR Time Series for the Extraction of Natural Surface Changes. ISPRS J. Photogramm. Remote Sens. 2021, 173, 297–308. [Google Scholar] [CrossRef]
- Huang, R.; Jiang, L.; Shen, X.; Dong, Z.; Zhou, Q.; Yang, B.; Wang, H. An Efficient Method of Monitoring Slow-Moving Landslides with Long-Range Terrestrial Laser Scanning: A Case Study of the Dashu Landslide in the Three Gorges Reservoir Region, China. Landslides 2019, 16, 839–855. [Google Scholar] [CrossRef]
- Nourbakhshbeidokhti, S.; Kinoshita, A.M.; Chin, A.; Florsheim, J.L. A Workflow to Estimate Topographic and Volumetric Changes and Errors in Channel Sedimentation after Disturbance. Remote Sens. 2019, 11, 586. [Google Scholar] [CrossRef]
- Williams, J.G.; Anders, K.; Winiwarter, L.; Zahs, V.; Höfle, B. Multi-Directional Change Detection between Point Clouds. ISPRS J. Photogramm. Remote Sens. 2021, 172, 95–113. [Google Scholar] [CrossRef]
- Li, Y.; Liu, P.; Li, H.; Huang, F.; Li, Y.; Liu, P.; Li, H.; Huang, F. A Comparison Method for 3D Laser Point Clouds in Displacement Change Detection for Arch Dams. ISPRS Int. J. Geo-Inf. 2021, 10, 184. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Liang, X.; Huang, T.; Fu, S.; Liu, B. Evaluation of Structure from Motion (SfM) Photogrammetry on the Measurement of Rill and Interrill Erosion in a Typical Loess. Geomorphology 2021, 385, 107734. [Google Scholar] [CrossRef]
- Laburda, T.; Krása, J.; Zumr, D.; Devátý, J.; Vrána, M.; Zambon, N.; Johannsen, L.L.; Klik, A.; Strauss, P.; Dostál, T. SfM-MVS Photogrammetry for Splash Erosion Monitoring under Natural Rainfall. Earth Surf. Process Landf. 2021, 46, 1067–1082. [Google Scholar] [CrossRef]
- Schneiderwind, S.; Mason, J.; Wiatr, T.; Papanikolaou, I.; Reicherter, K. 3-D Visualisation of Palaeoseismic Trench Stratigraphy and Trench Logging Using Terrestrial Remote Sensing and GPR – A Multiparametric Interpretation. Solid Earth 2016, 7, 323–340. [Google Scholar] [CrossRef]
- Mason, J.; Schneiderwind, S.; Wiatr, T.; Reicherter, K.; Pallikarakis, A.; Papanikolaou, I.; Mechernich, S.; Wiatr, T. Fault Structure and Deformation Rates at the Lastros-Sfaka Graben, Crete. Tectonophysics 2016, 683, 216–232. [Google Scholar] [CrossRef]
- Wiatr, T.; Papanikolaou, I.; Fernández-Steeger, T.; Reicherter, K. Bedrock Fault Scarp History: Insight from t-LiDAR Backscatter Behaviour and Analysis of Structure Changes. Geomorphology 2015, 228, 421–431. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, S.; Zhang, Q.; Liu, Q.; Ma, Z.; Wang, T.; Tian, J.; Li, X. Research of Deformation and Soil Moisture in Loess Landslide Simultaneous Retrieved with Ground-Based GNSS. Remote Sens. 2022, 14, 5687. [Google Scholar] [CrossRef]
- Carlà, T.; Tofani, V.; Lombardi, L.; Raspini, F.; Bianchini, S.; Bertolo, D.; Thuegaz, P.; Casagli, N. Combination of GNSS, Satellite InSAR, and GBInSAR Remote Sensing Monitoring to Improve the Understanding of a Large Landslide in High Alpine Environment. Geomorphology 2019, 335, 62–75. [Google Scholar] [CrossRef]
- Calcaterra, S.; Cesi, C.; Di Maio, C.; Gambino, P.; Merli, K.; Vallario, M.; Vassallo, R. Surface Displacements of Two Landslides Evaluated by GPS and Inclinometer Systems: A Case Study in Southern Apennines, Italy. Nat. Hazards 2012, 61, 257–266. [Google Scholar] [CrossRef]
- Huang, G.; Du, S.; Wang, D. GNSS techniques for real-time monitoring of landslides: A review. Satell. Navig. 2023, 4, 5. [Google Scholar] [CrossRef]
- Pineux, N.; Lisein, J.; Swerts, G.; Bielders, C.L.; Lejeune, P.; Colinet, G.; Degré, A. Can DEM Time Series Produced by UAV Be Used to Quantify Diffuse Erosion in an Agricultural Watershed? Geomorphology 2017, 280, 122–136. [Google Scholar] [CrossRef]
- Barreiro-Lostres, F.; Moreno, A.; González-Sampériz, P.; Giralt, S.; Nadal-Romero, E.; Valero-Garcés, B. Erosion in Mediterranean Mountain Landscapes during the Last Millennium: A Quantitative Approach Based on Lake Sediment Sequences (Iberian Range, Spain). CATENA 2017, 149, 782–798. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y. A Meta-Analysis of Soil Erosion Rates across the World. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef]
- Cerda, A.; Imeson, A.C.; Calvo, A. Fire and Aspect Induced Differences on the Erodibility and Hydrology of Soils at La Costera, Valencia, Southeast Spain. CATENA 1995, 24, 289–304. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Doerr, S.H.; Mataix-Solera, J.; Doerr, S.H. Hydrophobicity and Aggregate Stability in Calcareous Topsoils from Fire-Affected Pine Forests in Southeastern Spain. Geode 2004, 118, 77–88. [Google Scholar] [CrossRef]
- Margiorou, S.; Kastridis, A.; Sapountzis, M. Pre/Post-Fire Soil Erosion and Evaluation of Check-Dams Effectiveness in Mediterranean Suburban Catchments Based on Field Measurements and Modeling. Land 2022, 11, 1705. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Fire and Ecosystems. Kozlowski, T.T., Ahlgren, C.E., Eds.; 1974. Available online: https://books.google.gr/books/about/Fire_and_Ecosystems.html?id=gNRY4rmVq_kC&redir_esc=y (accessed on 19 January 2024).
- Soulis, K.X.; Generali, K.A.; Papadaki, C.; Theodoropoulos, C.; Psomiadis, E. Hydrological Response of Natural Mediterranean Watersheds to Forest Fires. Hydrology 2021, 8, 15. [Google Scholar] [CrossRef]
- Sala; Soler, M.; Pradas, M. Temporal and Spatial Variations in Runoff and Erosion in Burnt Soils. In Proceedings of the 2nd International Conference Forest Fire Research, Comissão de Coordenação Da Região Centro, Coimbra, Portugal, 21–24 November 1994; pp. 1123–1134. [Google Scholar]
- Andreu, V.; Imeson, A.C.; Rubio, J.L. Temporal Changes in Soil Aggregates and Water Erosion after a Wildfire in a Mediterranean Pine Forest. CATENA 2001, 44, 69–84. [Google Scholar] [CrossRef]
- Swanson, F.J. Fire and Geomorphic Processes. In Proceedings of the Fire Regimed and Ecosystems Conference, Honolulu, HI, USA, 11–15 December 1978. [Google Scholar]
Date | Acquisition Type |
---|---|
July 2015 | Wildfire event |
October 2015 | LiDAR |
April 2016 | LiDAR |
April 2016 | GPR |
January 2017 | LiDAR |
August 2018 | UAV–SfM |
March 2019 | UAV–SfM |
August 2020 | UAV–SfM |
April 2021 | GNSS RTK System |
t-LiDAR Sensor | UAV Sensor | GPR | GNSS RTK Receiver | |
---|---|---|---|---|
Sensor | FARO FOCUS 3D | DJI Phantom 4 | GSSI and SIR 3000 | Spectra SP60 |
Basic specifications | 0.6–330 m distance range | 1/23 12.4 MP, FOV 94° lens @20 mm camera sensor | 400 MHz antenna | RTK position |
Ranging error: +/−2 mm | 4000 × 3000 image analysis | 0–4 m depth range | 0.017 m vertical accuracy | |
0.008 m horizontal accuracy |
Resolution mm/pix | ||
---|---|---|
Product | 31 August 2018 | 18 March 2019 |
Tiled model | 4 | 1 |
DEM | 20 | 12 |
Orthomosaic | 5 | 5.8 |
Point Cloud | Reference Points | Registration Error (cm) | XYZ Error (cm) | Total Error (cm) |
---|---|---|---|---|
2015 | GNSS 2019 | 5 | 5 | 5 |
2016 | 2015 LiDAR | 3 | 5 | 5 |
2017 | GNSS 2021 | 1 | 2 | 2 |
2018 | GNSS 2019 | 3 | 2 | 3 |
2019 | GNSS 2019 | 3 | 1 | 3 |
Ilioupoli Test Site | DATE | SAND (%) | SILT (%) | CLAY (%) | Soil Texture Class | OM (%) | pH | Electrical Conductivity (μS/cm) |
---|---|---|---|---|---|---|---|---|
Sample Code | ||||||||
13_dam (4) | 2022 | 46.02 | 32.42 | 21.56 | L | 5.60 | 8.10 | 242 |
14_dam (3) | 2022 | 49.66 | 19.94 | 30.40 | SCL | 4.80 | 8.10 | 256 |
15_dam (2) | 2022 | 70.02 | 13.70 | 16.28 | SL | 1.10 | 8.20 | 126 |
16_dam (1) | 2022 | 46.40 | 31.14 | 22.46 | L | 6.70 | 8.00 | 279 |
Date Range | Method | Sediment (m3) | |
---|---|---|---|
From | To | ||
Dredged (~8/2015) | 4/2016 | GPR | 56 |
10/2015 | 4/2016 | t-LiDAR | 20 |
2017 | 2021 | t-LiDAR-GNSS | 9 |
2018 | 2019 | UAV–SfM | 2 |
Total 2015–2021 | 65 |
Tiled Model (mm/pixel) | UAV Flight Height (m) | Total XYZ Error (cm) | ||
---|---|---|---|---|
Ilioupoli test site | 8/2018 | 4 | 15 | 3 |
3/2019 | 1 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexiou, S.; Papanikolaou, I.; Schneiderwind, S.; Kehrle, V.; Reicherter, K. Monitoring and Quantifying Soil Erosion and Sedimentation Rates in Centimeter Accuracy Using UAV-Photogrammetry, GNSS, and t-LiDAR in a Post-Fire Setting. Remote Sens. 2024, 16, 802. https://doi.org/10.3390/rs16050802
Alexiou S, Papanikolaou I, Schneiderwind S, Kehrle V, Reicherter K. Monitoring and Quantifying Soil Erosion and Sedimentation Rates in Centimeter Accuracy Using UAV-Photogrammetry, GNSS, and t-LiDAR in a Post-Fire Setting. Remote Sensing. 2024; 16(5):802. https://doi.org/10.3390/rs16050802
Chicago/Turabian StyleAlexiou, Simoni, Ioannis Papanikolaou, Sascha Schneiderwind, Valerie Kehrle, and Klaus Reicherter. 2024. "Monitoring and Quantifying Soil Erosion and Sedimentation Rates in Centimeter Accuracy Using UAV-Photogrammetry, GNSS, and t-LiDAR in a Post-Fire Setting" Remote Sensing 16, no. 5: 802. https://doi.org/10.3390/rs16050802
APA StyleAlexiou, S., Papanikolaou, I., Schneiderwind, S., Kehrle, V., & Reicherter, K. (2024). Monitoring and Quantifying Soil Erosion and Sedimentation Rates in Centimeter Accuracy Using UAV-Photogrammetry, GNSS, and t-LiDAR in a Post-Fire Setting. Remote Sensing, 16(5), 802. https://doi.org/10.3390/rs16050802