WBIM-GAN: A Generative Adversarial Network Based Wideband Interference Mitigation Model for Synthetic Aperture Radar
Abstract
:1. Introduction
1.1. Related Work
1.2. Main Contributions
- A novel algorithm for mitigating WBI by using GAN is introduced, which can achieve WBI feature fast extraction and useful target signal accuracy reconstruction with less loss. In contrast to the conventional WBI mitigation algorithm utilized for SAR, the WBIM-GAN learns an explicit function mapping from the WBI-corrupted SAR echo to the WBI-free SAR echo in an end-to-end data-driven way. It simplifies the difficulty of designing the WBI mitigation algorithm because it does not require prior knowledge.
- The WBIM-GAN, which is integrated with the PatchGAN architecture, is capable of capturing the statistical and structural characteristics of the WBI effectively. Meanwhile, it can improve the accuracy of WBI feature extraction and reduce the loss of recovered useful target signals.
- The effectiveness, validity, and generalization of the WBIM-GAN was confirmed on multiple measure SAR data in TopSAR mode. At the same time, the class activation mapping techniques fully demonstrate that the WBIM-GAN is more concerned with the WBI feature, which further proves its effectiveness.
2. WBI Expressions and Methodology
2.1. WBI Formulation
2.2. WBI Detection
2.3. WBIM-GAN
2.4. Evaluation Measures
3. Experimental Results
3.1. Datasets
3.2. Results of the Simulated Sentinel-1A Data with WBI Corruption
3.3. Results of the Measured WBI-Corrupted Sentinel-1A Data
3.4. Results of the Measured WBI-Corrupted Sentinel-1B Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Reigber, A.; Scheiber, R.; Jager, M.; Pau, P.L.; Hajnsek, I.; Jagdhuber, T. Very-high-resolution airborne synthetic aperture radar imaging: Signal processing and applications. Proc. IEEE 2013, 101, 759–783. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Antonielli, B.; Bozzano, F.; Mugnozza, G.; Mazzanti, P. A fast and robust method for detecting trend turning points in InSAR displacement time series. Comput. Geosci. 2023, 185, 105546. [Google Scholar] [CrossRef]
- Shi, W.; Hu, Z.; Liu, H.; Cen, S.; Huang, J.; Chen, X. Ship Detection in SAR Images Based on Adjacent Context Guide Fusion Module and Dense Weighted Skip Connection. IEEE Access 2022, 10, 134263–134276. [Google Scholar] [CrossRef]
- Tao, M.; Lai, S.; Li, J.; Su, J.; Fan, Y.; Wang, L. Extraction and mitigation of radio frequency interference artifacts based on time-series sentinel-1 sar data. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5217211. [Google Scholar] [CrossRef]
- Lv, Z.; Fan, H.; Chen, Z.; Qiu, J.; Ren, M.; Zhang, Z. Mitigate the LFM-PRFI in SAR data: Joint down-range and cross-range filtering. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5205918. [Google Scholar] [CrossRef]
- Su, J.; Tao, H.; Tao, M.; Wang, L.; Xie, J. Narrowband interference suppression via RPCA-based signal separation in time–frequency domain. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2017, 10, 5016–5025. [Google Scholar] [CrossRef]
- Zhou, F.; Xing, M.; Bai, X.; Sun, G.; Bao, Z. Narrowband interference suppression for SAR based on complex empirical mode decomposition. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3202–3218. [Google Scholar]
- Vehmas, R.; Radius, A.; Dogan, O.; Ignatenko, V.; Leprovost, P.; Lamentowski, L.; Muff, D.; Nottingham, M.; Seilonen, T.; Vilja, P. Mitigation of RFI in high-resolution SAR data-algorithm overview and experimental demonstration. In Proceedings of the International Radar Symposium, Berlin, Germany, 24–26 May 2023; pp. 1–9. [Google Scholar]
- Ojowu, O., Jr.; Li, J. RFI suppression for synchronous impulse reconstruction UWB radar using RELAX. Int. J. Remote Sens. Appl. 2013, 3, 33–46. [Google Scholar]
- Ding, Y.; Fan, W.; Tao, M.; Zhang, Z.; Wang, L.; Zhou, F. Wideband interference mitigation for synthetic aperture radar based on the variational Bayesian method. Signal Process 2022, 198, 108581. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, L.; Li, J.; Chen, Z.; Yang, X. Reweighted tensor factorization method for SAR narrowband and wideband interference mitigation using smoothing multiview tensor model. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3298–3313. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, L.; Li, J.; Hong, W.; Nehorai, A. A Novel Tensor Technique for Simultaneous Narrowband and Wideband Interference Suppression on Single-Channel SAR System. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9575–9588. [Google Scholar] [CrossRef]
- Liu, H.; Li, D.; Zhou, Y.; Truong, T. Simultaneous radio frequency and wideband interference suppression in SAR signals via sparsity exploitation in time–frequency domain. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5780–5793. [Google Scholar] [CrossRef]
- Ding, Y.; Fan, W.; Zhang, Z.; Zhou, F.; Lu, B. Radio Frequency Interference Mitigation for Synthetic Aperture Radar Based on the Time-Frequency Constraint Joint Low-Rank and Sparsity Properties. Remote Sens. 2022, 14, 775. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, G.; Zhang, Z.; Xiang, Y.; Li, J.; Nehorai, A. Fast narrowband RFI suppression algorithms for SAR systems via matrix factorization techniques. IEEE Trans. Geosci. Remote Sens. 2019, 57, 250–262. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Wen, C.; Xia, X.; Hong, W. An efficient radio frequency interference mitigation algorithm in real synthetic aperture radar data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Tao, M.; Zhou, F.; Zhang, Z. Wideband interference mitigation in high-resolution airborne synthetic aperture radar data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 74–87. [Google Scholar] [CrossRef]
- Yang, Z.; Du, W.; Liu, Z.; Liao, G. WBI suppression for SAR using iterative adaptive method. IEEE J. Sel. Topics Appl. Earth Observ. 2016, 9, 1008–1014. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Commun. ACM 2012, 60, 84–90. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Michelsanti, D.; Tan, Z. Conditional generative adversarial networks for speech enhancement and noise-robust speaker verification. In Proceedings of the Annual Conference of the International Speech Communication Association 2008–2012, Stockholm, Sweden, 20–24 August 2017. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017 (CVPR), Honolulu, HI, USA, 21–26 January 2017; pp. 105–114. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–11 December 2014; pp. 2672–2680. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August 2017; pp. 298–321. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved training of wasserstein GANs. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 5768–5778. [Google Scholar]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar]
- Zhang, Z.; Ding, Y.; Fan, W.; Zhou, F.; Lu, B. Wideband interference mitigation for sar based on generative adversarial network. In Proceedings of the International Radar Conference, Haikou, China, 15–19 December 2021; pp. 1–4. [Google Scholar]
- Tao, M.; Li, J.; Su, J.; Wang, L. Characterization and removal of rfi artifacts in radar data via model-constrained deep learning approach. Remote Sens. 2022, 14, 1578. [Google Scholar] [CrossRef]
- Fan, W.; Zhou, F.; Tao, M.; Bai, X.; Rong, P.; Yang, S.; Tian, T. Interference mitigation for synthetic aperture radar based on deep residual network. Remote Sens. 2019, 11, 1654. [Google Scholar] [CrossRef]
- Nair, A.; Rangamani, A.; Nguyen, L.; Bell, M.; Tran, T. Spectral gap extrapolation and radio frequency interference suppression using 1d unets. In Proceedings of the IEEE National Radar Conference, Atlanta, GA, USA, 7–14 May 2021; pp. 1–4. [Google Scholar]
- Fuchs, A.; Rock, J.; Toch, M.; Meissner, R.; Pernkopf, F. Complex-valued convolutional neural networks for enhanced radar signal denoising and interference mitigation. In Proceedings of the IEEE National Radar Conference, Atlanta, GA, USA, 7–14 May 2021; pp. 1–4. [Google Scholar]
- Meyer, F.J.; Nicoll, J.B.; Doulgeris, A.P. Correction and characterization of radio frequency interference signatures in l-band synthetic aperture radar data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4961–4972. [Google Scholar] [CrossRef]
- Zhou, F.; Tao, M. Research on methods for narrowband interference suppression in synthetic aperture radar data. IEEE J. Sel. Topics Appl. Earth Observ. 2015, 8, 7. [Google Scholar] [CrossRef]
- Su, J.; Xi, M.; Gong, Y.; Tao, M.; Fan, Y.; Wang, L. Time-Varying Wideband Interference Mitigation for SAR via Time-Frequency-Pulse Joint Decomposition Algorithm. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5118816. [Google Scholar] [CrossRef]
Abbr. | Full Name | Abbr. | Full Name | |
---|---|---|---|---|
WBI | Wideband interference | IMN | Interference mitigation network | |
SAR | Synthetic aperture radar | ISTFT | Inverse short-time Fourier transform | |
WBIM-GAN | WBI mitigation–generative adversarial network | Conv | Convolutional layers | |
STFT | Short-time Fourier transform | ReLU | Linear unit layers | |
TFD | Time–frequency domain | BN | Batch normalization layer | |
GAN | Generative adversarial network | Es | Elementwise sum layer | |
RFI | Radio frequency interference | SDR | Signal-distortion ratio | |
NBI | Narrowband interference | MNR | Multiplicative noise ratio | |
PRF | Pulse repetition frequency | SSIM | Structure similarity | |
TopSAR | Terrain Observation by Progressive Scans Mode | PSNR | Peak signal-to-noise ratio | |
RMSE | Root mean square error | JSR | Jam-to-signal ratios | |
ISNF | Instantaneous-spectrum notch filtering | ESP | Eigenspace projection | |
MFD | Matrix factorization decomposition | IAA | Iterative adaptive approach |
Input: Complex SAR echoes contaminated with WBI in the TFD | |
-L1 | [9 × 9, 64], s = 1; |
-B1 | [3 × 3, 64], s = 1; BN; [3 × 3, 64], s = 1; BN; Es. (-L1); |
-B2 | [3 × 3, 64], s = 1; BN; [3 × 3, 64], s = 1; BN; Es. (-B1); |
…… | |
-B11 | [3 × 3, 64], s = 1; BN; [3 × 3, 64], s = 1; BN; Es. (-B10); |
-L2 | [3 × 3, 64], s = 1; BN; Es. (-L1); |
-Output | [3 × 3, 2], s = 1; |
Input: Generated the SAR echoes without WBI or WBI-free SAR echoes in the TFD | |
-L1 | [3 × 3, 16], s = 1; |
-L2 | [3 × 3, 16], s = 1; BN; |
-L3 | [3 × 3, 32], s = 1; BN; |
-L4 | [3 × 3, 32], s = 1; BN; |
-L5 | [3 × 3, 64], s = 1; BN; |
-L6 | [3 × 3, 64], s = 1; BN; |
-L7 | [3 × 3, 128], s = 1; BN; |
-L8 | [3 × 3, 128], s = 1; BN; |
-Output | [3 × 3, 1], s = 1; |
Parameter | Value |
---|---|
Carrier frequency | 5.405 GHz |
Bandwidth | 56.59 MHz |
Sampling frequency | 64.345 MHz |
Pulse repetition frequency (PRF) | 1717 Hz |
Algorithms | MNR (dB) | SSIM | PSNR | RMSE |
---|---|---|---|---|
GoDec | −6.8082 | 0.8071 | 36.0737 | 0.4667 |
ISNF | −9.6385 | 0.8471 | 36.7555 | 0.3791 |
ESP | −10.4361 | 0.8597 | 36.9835 | 0.3757 |
IAA | −9.4438 | 0.8517 | 36.9612 | 0.3806 |
MFD | −7.5597 | 0.8441 | 36.7016 | 0.3940 |
IMFD | −7.8758 | 0.4064 | 28.2478 | 2.2445 |
APMFD | −8.1527 | 0.4981 | 29.8941 | 1.7547 |
RPCA-TFP-JDA | −9.8652 | 0.8195 | 36.1798 | 0.4336 |
IMN | −12.0819 | 0.8726 | 37.2718 | 0.3716 |
WBIM-GAN | −12.3211 | 0.8735 | 37.2894 | 0.3716 |
Algorithms | Running Time (s) |
---|---|
GoDec | 21.713 |
ISNF | 21.703 |
ESP | 68.510 |
IAA | 3011.68 |
MFD | 25.78 |
IMFD | 40.98 |
APMFD | 109.18 |
RPCA-TFP-JDA | 235.883 |
IMN | 26.587 |
WBIM-GAN | 32.691 |
Algorithms | MNR (dB) | SSIM | PSNR | RMSE |
---|---|---|---|---|
GoDec | −7.4943 | 0.7768 | 35.3005 | 0.6800 |
Tffilter | −7.1579 | 0.8011 | 35.5124 | 0.6465 |
Eigfilter | −8.2282 | 0.8332 | 35.8156 | 0.5366 |
IAA | −9.2969 | 0.8251 | 35.7949 | 0.4975 |
MFD | −8.8208 | 0.8191 | 35.6881 | 0.5358 |
IMFD | −8.8428 | 0.6623 | 33.4477 | 1.1715 |
APMFD | −8.4524 | 0.6146 | 32.4047 | 1.4018 |
RPCA-TFP-JDA | −8.6186 | 0.7982 | 35.4474 | 0.6057 |
IMN | −10.5136 | 0.8454 | 35.9998 | 0.4051 |
WBIM-GAN | −10.8336 | 0.8482 | 36.0106 | 0.3939 |
Algorithms | Running Time (s) |
---|---|
GoDec | 11.772 |
ISNR | 11.721 |
ESP | 35.930 |
IAA | 1379.250 |
MFD | 12.400 |
IMFD | 35.440 |
APMFD | 143.230 |
RPCA-TFP-JDA | 228.101 |
IMN | 15.938 |
WBIM-GAN | 15.626 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Fan, W.; Wang, S.; Zhou, F. WBIM-GAN: A Generative Adversarial Network Based Wideband Interference Mitigation Model for Synthetic Aperture Radar. Remote Sens. 2024, 16, 910. https://doi.org/10.3390/rs16050910
Xu X, Fan W, Wang S, Zhou F. WBIM-GAN: A Generative Adversarial Network Based Wideband Interference Mitigation Model for Synthetic Aperture Radar. Remote Sensing. 2024; 16(5):910. https://doi.org/10.3390/rs16050910
Chicago/Turabian StyleXu, Xiaoyu, Weiwei Fan, Siyao Wang, and Feng Zhou. 2024. "WBIM-GAN: A Generative Adversarial Network Based Wideband Interference Mitigation Model for Synthetic Aperture Radar" Remote Sensing 16, no. 5: 910. https://doi.org/10.3390/rs16050910
APA StyleXu, X., Fan, W., Wang, S., & Zhou, F. (2024). WBIM-GAN: A Generative Adversarial Network Based Wideband Interference Mitigation Model for Synthetic Aperture Radar. Remote Sensing, 16(5), 910. https://doi.org/10.3390/rs16050910