Interpretation of Geological Features and Volcanic Activity in the Tsiolkovsky Region of the Moon
Abstract
:1. Introduction
2. Geologic Context of the Tsiolkovsky Crater
3. Data and Methods
3.1. Data
3.2. Methods
4. Results
4.1. Topographic Features
4.2. Spectral Characteristics and Mineral Distribution
4.3. Chemical Composition and Lunar Crustal Thickness Analysis
4.4. Chronology
4.5. Structural Characteristics
5. Discussion
5.1. Stages and Characteristics of Regional Volcanic Activity
- The first episode of volcanic activity occurred at 3.5–3.7 Ga, and multiple lava flows erupted in the Tsiolkovsky crater floor with a time span from 3.66 Ga to 3.52 Ga and a duration of ~331 Ma. The total exposed area of mare basalts that formed in this episode is 11,854 km2. Compared with those of the Apollo, Luna, and Chang’e-5 samples, the magma compositions that erupted in this region are similar to those of the basalt samples from the Apollo 17 and Apollo 14 landing sites. The compositions of these eruptions are highly evolved, i.e., with higher FeO and HCP contents and lower Al2O3 content and Mg# value of mafic minerals.
- The second episode of volcanic activity erupted at 3.41 Ga, and a small eruption occurred in the northernmost part of the Tsiolkovsky crater floor with an area of 234 km2. The major element composition is similar to that of the Apollo 16 basalt samples; was less evolved; and is characterized by the lower contents of FeO and TiO2, the higher contents of Mg# value of mafic minerals and Al2O3, and the spectral signature of low–calcium pyroxene.
5.2. Regional Evolution Process
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, W.; Tian, H.; Chen, Y.; Hu, S.; Su, B.; Lin, Y.; Li, X. Petrological and geochemical characteristics of Chang’ E-5 basalt and discussions on its origin. Bull. Mineral. Petrol. Geochem. 2023, 42, 442–461. [Google Scholar] [CrossRef]
- Zhao, J.; Qiao, L.; Zhang, F.; Yuan, Y.; Huang, Q.; Yan, J.; Qian, Y.; Zou, Y.; Xiao, L. Volcanism and Deep Structures of the Moon. Space Sci. Technol. 2023, 3, 76. [Google Scholar] [CrossRef]
- Pasckert, J.H.; Hiesinger, H.; van der Bogert, C.H. Small-scale lunar farside volcanism. Icarus 2015, 257, 336–354. [Google Scholar] [CrossRef]
- Hiesinger, H.; Jaumann, R.; Neukum, G.; Head, J.W., III. Ages of mare basalts on the lunar nearside. J. Geophys. Res. Planets 2000, 105, 29239–29275. [Google Scholar] [CrossRef]
- Gornitz, V. Igneous vs impact processes for the origin of the mare lavas. Moon 1973, 6, 357–379. [Google Scholar] [CrossRef]
- Walker, A.S.; El-baz, F. Analysis of crater distributions in mare units on the lunar far side. Moon Planets 1982, 27, 91–106. [Google Scholar] [CrossRef]
- Tyrie, A. A description of the crater Tsiolkovsky on the Lunar far side. Earth Moon Planets 1988, 42, 265–275. [Google Scholar] [CrossRef]
- Salih, A.L.; Mühlbauer, M.; Grumpe, A.; Pasckert, J.H.; Wöhler, C.; Hiesinger, H. Mapping of planetary surface age based on crater statistics obtained by an automatic detection algorithm. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 479–486. [Google Scholar] [CrossRef]
- Heather, D.J.; Dunkin, S.K. Stratigraphy of the Lunar crust around the farside craters King and Tsiolkovsky. In Proceedings of the 31st Annual Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 2000. [Google Scholar]
- Othake, M.; Matsunaga, T.; Haruyama, J.; Yokota, Y.; Morota, T.; Honda, C.; Ogawa, Y.; Torii, M.; Miyamoto, H.; Arai, T.; et al. The global distribution of pure anorthosite on the Moon. Nature 2009, 461, 236–241. [Google Scholar] [CrossRef]
- Matsunaga, T.; Othake, M.; Haruyama, J.; Ogawa, Y.; Nakamura, R.; Yokota, Y.; Morota, T.; Honda, C.; Torii, M.; Abe, M.; et al. Discoveries on the lithology of lunar crater central peaks by SELENE Spectral Profiler. Geophys. Res. Lett. 2008, 35, L23201. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Neumann, G.A.; Nimmo, F.; Kiefer, W.S.; Taylor, G.J.; Melosh, H.J.; Phillips, R.J.; Solomon, S.C.; Andrews-Hanna, J.C.; Asmar, S.W.; et al. The Crust of the Moon as Seen by GRAIL. Sciencexpress 2012, 339, 671–675. [Google Scholar] [CrossRef]
- Pieters, C.M.; Tompkins, S. Tsiolkovsky crater: A window into crustal processes on the lunar farside. J. Geophys. Res. 1999, 104, 21935–21949. [Google Scholar] [CrossRef]
- Lu, T.; Zhu, K.; Chen, S.; Liu, J.; Ling, Z.; Ding, X.; Han, K.; Chen, J.; Cheng, W.; Lei, D.; et al. The 1:2,500,000-scale global tectonic map of the Moon. Sci. Bull. 2022, 67, 1962–1966. [Google Scholar] [CrossRef]
- Sato, H.; Robinson, M.S.; Lawrence, S.J.; Denevi, B.W.; Hapke, B.; Jolliff, B.L.; Hiesinger, H. Lunar mare TiO2 abundances estimated from UV/Vis reflectance. Icarus 2017, 296, 216–238. [Google Scholar] [CrossRef]
- Lemelin, M.; Lucey, P.G.; Camon, A. Compositional Maps of the Lunar Polar Regions Derived from the Kaguya Spectral Profiler and the Lunar Orbiter Laser Altimeter Data. Planet. Sci. J. 2022, 3, 63. [Google Scholar] [CrossRef]
- Lawrence, D.J.; Feldman, W.C.; Barraclough, B.L.; Binder, A.B.; Elphic, R.C.; Maurice, S.; Thomsen, D.R. Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer. Science 1998, 281, 1484–1489. [Google Scholar] [CrossRef]
- Lawrence, D.J.; Feldman, W.C.; Barraclough, B.L.; Binder, A.B.; Elphic, R.S.; Maurice, S.; Miller, M.C.; Prettyman, T.H. Thorium abundances on the lunar surface. J. Geophys. Res. 2000, 105, 20307–20331. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Yang, M.; Xiao, X.; Qiu, D.; Yan, J.; Xiao, L.; Huang, J. New maps of major oxides and Mg# of the lunar surface from additional geochemical data of Chang’E-5 samples and KAGUYA multiband imager data. Icarus 2023, 397, 115505. [Google Scholar]
- Pieters, C.M.; Boardman, J.; Buratti, B.; Chatterjee, A.; Clark, R.; Glavich, T.; Green, R.; Head, J., III; Isaacson, P.; Malaret, E.; et al. The Moon Mineralogy Mapper (M3) on Chandrayaan-1. Curr. Sci. 2009, 96, 500–505. [Google Scholar]
- Sun, L.; Ling, Z.; Liu, J. The spectral characteristics and remote detection of minerals in lunar Orientale Basin. Earth Sci. Front. 2014, 21, 188–203. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, J.; Ling, Z.; Lu, X.; Li, Z. Chronology, composition, and mineralogy of mare basalts in the junction of Oceanus Procellarum, Mare Imbrium, Mare Insularum, and Mare Vaporum. Icarus 2023, 397, 115531. [Google Scholar] [CrossRef]
- Yue, Z.; Di, K.; Wan, W.; Liu, Z.; Gou, S.; Liu, B.; Peng, M.; Wang, Y.; Jia, M.; Liu, J.; et al. Updated lunar cratering chronology model with the radiometric age of Chang’e-5 samples. Nat. Astron. 2022, 6, 541–545. [Google Scholar] [CrossRef]
- Hartmann, W.K. Does crater “saturation equilibrium” occur in the solar system? Icarus 1984, 60, 56–74. [Google Scholar] [CrossRef]
- Neukum, G.; Ivanov, B.; Hartmann, W. Catering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 2001, 96, 55–86. [Google Scholar] [CrossRef]
- Ji, J.; Guo, D.; Liu, J.; Chen, S.; Ling, Z.; Ding, X.; Han, K.; Chen, J.; Chen, W.; Zhu, K.; et al. The 1:2,500,000-scale geologic map of the global Moon. Sci. Bull. 2022, 67, 1544–1548. [Google Scholar] [CrossRef]
- Boyce, J.M.; Mouginis-Mark, P.; Robinson, M. The Tsiolkovskiy crater landslide, the moon: An LROC view. Icarus 2020, 337, 113464. [Google Scholar] [CrossRef]
- Whitten, J.; Head, J.W.; Staid, M.; Pieters, C.M.; Mustard, J.; Clark, R.; Nettles, J.; Klima, R.L.; Taylor, L. Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1. J. Geophys. Res. Planets 2011, 116, E00G09. [Google Scholar] [CrossRef]
- Tompkins, S.; Pieters, C.M. Mineralogy of the lunar crust: Results from Clementine. Meteorit. Planet. Sci. 1999, 34, 25–41. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nakamura, R.; Matsunaga, T.; Ogawa, Y.; Ishihara, Y.; Morota, T.; Hirata, N.; Ohtake, M.; Hiroi, T.; Yokota, Y.; et al. Olivine-rich exposures in the South Pole-Aitken Basin. Icarus 2012, 218, 331–344. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nakamura, R.; Matsunaga, T.; Ogawa, Y.; Ishihara, Y.; Morota, T.; Hirata, N.; Ohtake, M.; Hiroi, T.; Yokota, Y.; et al. Massive layer of pure anorthosite on the Moon. Geophys. Res. Lett. 2012, 39, L13201. [Google Scholar] [CrossRef]
- Chen, J.; Ling, Z.; Liu, J.; Chen, S.; Ding, X.; Chen, J.; Cheng, W.; Li, B.; Zhang, J.; Sun, L. Digital and global lithologic mapping of the Moon at a 1:2,500,000 scale. Sci. Bull. 2022, 67, 2050–2054. [Google Scholar] [CrossRef]
- Boyce, J.M.; Johnson, D. Ages of flow units in Mare Crisium based on crater density. In Proceedings of the 8th Lunar and Planetary Science Conference, Houston, TX, USA, 14–18 March 1977; pp. 3495–3502. [Google Scholar]
- Boyce, J.M.; Peter, M.; Robinson, P.J. An LROC update: The Tsiolkovsky landslide. In Proceedings of the 47th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016. [Google Scholar]
- Greenhagen, B.T.; Neish, C.D.; Williams, J.P.; Cahill, J.T.S.; Ghent, R.R.; Hayne, P.O.; Lawrence, S.; Petro, P.E.; Bandfield, J.L. Origin of the anomalously rocky appearance of Tsiolkovsky crater. Icarus 2016, 273, 237–247. [Google Scholar] [CrossRef]
- Plescia, J.B.; Golombek, M.P. Origin of planetary wrinkle ridges based on the study of terrestrial analogs. Geol. Soc. Am. Bull. 1986, 97, 1289–1299. [Google Scholar] [CrossRef]
- Schultz, R.A. Localization of bedding plane slip and backthrust faults above blind thrust faults: Keys to wrinkle ridge structure. J. Geophys. Res. Planets 2000, 105, 12035–12052. [Google Scholar] [CrossRef]
- Near, C.R. Mare Basalt Database (Major & Trace Elements). 2008. Available online: http://www.3.nd.edu/~cneal/Lunar-L/ (accessed on 4 February 2008).
- Shearer, C.K.; Hess, P.C.; Wieczorek, M.A.; Pritchard, M.E.; Parmentier, E.M.; Borg, L.E.; Longhi, J.; Elkins-Tanton, L.T.; Neal, C.R.; Antonenko, I.; et al. Thermal and Magmatic Evolution of the Moon. Rev. Mineral. Geochem. 2006, 60, 365–518. [Google Scholar] [CrossRef]
- Warren, P.H. The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. 1985, 13, 201–240. [Google Scholar] [CrossRef]
- Neal, C.R.; Taylor, L.A. Petrogenesis of mare basalts: A record of lunar volcanism. Geochim. Cosmochim. Acta 1992, 56, 2177–2211. [Google Scholar] [CrossRef]
- Jozwiak, L.M.; Head, J.W.; Zuber, M.T.; Smith, D.E.; Neumaan, G.A. Lunar floor-fractured craters: Classification, distribution, origin and implications for magmatism and shallow crustal structure. J. Geophys. Res. Planets 2012, 117, E11. [Google Scholar] [CrossRef]
- Wilson, L.; Head, J.W. Lunar floor-fractured craters: Modes of dike and emplacement and implications of gas production and intrusion cooling on surface morphology and structure. Icarus 2018, 305, 105–122. [Google Scholar] [CrossRef]
- Baldwin, R.B. Ancient giant craters and the age of the Lunar Surface. Astron. J. 1969, 74, 570–571. [Google Scholar] [CrossRef]
- Wilbur, C.L. Volcano-tectionic history of Tsiolkovsky. Lunar Planet Sci. 1978, 9, 1253–1255. [Google Scholar]
Data File Name | Date | Orbit Altitude (km) | Optical Period | Resolution (m/pixel) | Phase Angle Range (°) |
---|---|---|---|---|---|
m3g20090127t031145_V01_RFL | 20090127 | 100 | OP1b | 140 | 35–90 |
m3g20090529t061013_V01_RFL | 20090529 | 200 | OP2c | 280 | 0–100 |
m3g20090529t100749_V01_RFL | 20090529 | 200 | OP2c | 280 | 0–100 |
m3g20090529t143509_V01_RFL | 20090529 | 200 | OP2c | 280 | 0–100 |
m3g20090529t183825_V01_RFL | 20090529 | 200 | OP2c | 280 | 0–100 |
m3g20090529t230608_V01_RFL | 20090529 | 200 | OP2c | 280 | 0–100 |
m3g20090530t030925_V01_RFL_ | 20090530 | 200 | OP2c | 280 | 0–100 |
m3g20090530t073724_V01_RFL_ | 20090530 | 200 | OP2c | 280 | 0–100 |
m3g20090626t142653_V01_RFL | 20090626 | 200 | OP2c | 280 | 0–100 |
m3g20090626t182943_V01_RFL_ | 20090626 | 200 | OP2c | 280 | 0–100 |
Unit Name | Dating Area (km2) | Number of Craters | Model Ages (Ga) | Deviation (Ga) |
---|---|---|---|---|
A | 283.08 | 20 | 3.57 | +0.055/−0.073 |
B | 1259.40 | 94 | 3.63 | +0.022/−0.026 |
C | 348.97 | 38 | 3.66 | +0.033/−0.042 |
E | 254.94 | 16 | 3.52 | +0.072/−0.11 |
F | 222.21 | 26 | 3.64 | +0.043/−0.063 |
G | 187.73 | 20 | 3.62 | +0.049/−0.062 |
H | 775.10 | 66 | 3.64 | +0.026/−0.032 |
I | 1020.44 | 97 | 3.65 | +0.021/−0.025 |
J | 195.60 | 20 | 3.41 | +0.094/−0.18 |
Model_Age | FeO | TiO2 | Mg# | Th | Al2O3 | CaO | SiO2 |
---|---|---|---|---|---|---|---|
~3.4 Ga | 10.84 | 1.15 | 65.89 | 1.35 | 19.14 | 12.64 | 46.5 |
3.5–3.7 Ga | 15.71 | 2.22 | 51.73 | 1.28 | 14.63 | 11.17 | 47.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ding, X.; Chen, J.; Han, K.; Shi, C.; Jin, M.; Liu, L.; Liu, X.; Deng, J. Interpretation of Geological Features and Volcanic Activity in the Tsiolkovsky Region of the Moon. Remote Sens. 2024, 16, 1000. https://doi.org/10.3390/rs16061000
Wang Y, Ding X, Chen J, Han K, Shi C, Jin M, Liu L, Liu X, Deng J. Interpretation of Geological Features and Volcanic Activity in the Tsiolkovsky Region of the Moon. Remote Sensing. 2024; 16(6):1000. https://doi.org/10.3390/rs16061000
Chicago/Turabian StyleWang, Ying, Xiaozhong Ding, Jian Chen, Kunying Han, Chenglong Shi, Ming Jin, Liwei Liu, Xinbao Liu, and Jiayin Deng. 2024. "Interpretation of Geological Features and Volcanic Activity in the Tsiolkovsky Region of the Moon" Remote Sensing 16, no. 6: 1000. https://doi.org/10.3390/rs16061000
APA StyleWang, Y., Ding, X., Chen, J., Han, K., Shi, C., Jin, M., Liu, L., Liu, X., & Deng, J. (2024). Interpretation of Geological Features and Volcanic Activity in the Tsiolkovsky Region of the Moon. Remote Sensing, 16(6), 1000. https://doi.org/10.3390/rs16061000