Cost-Efficient Multi-GNSS Station with Real-Time Transmission for Geodynamics Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hardware Specifications and Description of the System
2.2. Software: Flowchart Process
3. Results
3.1. Data Statistics and Quality
3.2. GNSS Positioning—Daily Solution
3.3. GNSS Positioning—Kinematic Solution
3.4. GNSS Positioning—Real Time Solution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bock, Y.; Melgar, D. Physical applications of GPS geodesy: A review. Rep. Prog. Phys. 2016, 79, 106801. [Google Scholar] [CrossRef] [PubMed]
- Nocquet, J.M.; Jarrin, P.; Vallée, M.; Mothes, P.A.; Grandin, R.; Rolandone, F.; Delouis, B.; Yepes, H.; Font, Y.; Fuentes, D.; et al. Supercycle at the Ecuadorian subduction zone revealed after the 2016 Pedernales earthquake. Nat. Geosci. 2016, 10, 145. [Google Scholar] [CrossRef]
- Ardusimple on Website. Low-cost GPS/GNSS Products. 2023. Available online: https://www.ardusimple.com/ (accessed on 6 March 2024).
- Cina, A.; Piras, M. Performance of low-cost GNSS receiver for landslides monitoring: Test and results. Geomat. Nat. Hazards Risk 2015, 6, 497–514. [Google Scholar] [CrossRef]
- Garrido-Carretero, M.S.; de Lacy-Pérez de los Cobos, M.C.; Borque-Arancón, M.J.; Ruiz-Armenteros, A.M.; Moreno-Guerrero, R.; Gil-Cruz, A.J. Low-cost GNSS receiver in RTK positioning under the standard ISO-17123-8: A feasible option in geomatics. Measurement 2019, 137, 168–178. [Google Scholar] [CrossRef]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Zhbankov, G.A.; Danilkin, N.P.; Maltseva, O.A. Influence of the ionosphere on the accuracy of the satellite navigation system. Acta Astronaut. 2022, 190, 194–201. [Google Scholar] [CrossRef]
- Janos, D.; Kuras, P. Evaluation of Low-Cost GNSS Receiver under Demanding Conditions in RTK Network Mode. Sensors 2021, 21, 5552. [Google Scholar] [CrossRef]
- Wielgocka, N.; Hadas, T.; Kaczmarek, A.; Marut, G. Feasibility of Using Low-Cost Dual-Frequency GNSS Receivers for Land Surveying. Sensors 2021, 21, 1956. [Google Scholar] [CrossRef]
- Hohensinn, R.; Stauffer, R.; Glaner, M.F.; Herrera Pinzón, I.D.; Vuadens, E.; Rossi, Y.; Clinton, J.; Rothacher, M. Low-Cost GNSS and Real-Time PPP: Assessing the Precision of the u-blox ZED-F9P for Kinematic Monitoring Applications. Remote Sens. 2022, 14, 5100. [Google Scholar] [CrossRef]
- Hamza, V.; Stopar, B.; Sterle, O.; Pavlovčič-Prešeren, P. A Cost-Effective GNSS Solution for Continuous Monitoring of Landslides. Remote Sens. 2023, 15, 2287. [Google Scholar] [CrossRef]
- Curone, D.; Savarese, G.; Antonini, M.; Baucry, R.; Amani, E.; Boulandet, A.; Cataldo, M.; Chambon, P.; Chersich, M.; Hussein, A.B.; et al. An Innovative Low-Power, Low-Cost, Multi-Constellation Geodetic-Grade Global Navigation Satellite System Reference Station for the Densification of Permanent Networks: The GREAT Project. Sensors 2023, 23, 6032. [Google Scholar] [CrossRef] [PubMed]
- Tunini, L.; Zuliani, D.; Magrin, A. Applicability of Cost-Effective GNSS Sensors for Crustal Deformation Studies. Sensors 2022, 22, 350. [Google Scholar] [CrossRef] [PubMed]
- NOAA US Department of Commerce on Website. Antenna Calibrations on National Geodetic Survey. Available online: https://www.ngs.noaa.gov/ANTCAL/index.xhtml# (accessed on 6 March 2024).
- RENAG on Website. Permanent French National Geodetic Network; Epos-France: Gennevilliers, France, 2023; Available online: http://renag.resif.fr/fr/ (accessed on 6 March 2024).
- Santamaría, A. RENAG GNSS Combined Velocity Field [Dataset]; Epos-France: Gennevilliers, France, 2022. [Google Scholar]
- Vaclavovic, P.; Dousa, J. G-Nut/Anubis: Open-Source Tool for Multi-GNSS Data Monitoring with a Multipath Detection for New Signals, Frequencies and Constellations. In IAG 150 Years; Rizos, C., Willis, P., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 143, pp. 775–782. [Google Scholar] [CrossRef]
- Krietemeyer, A.; van der Marel, H.; van de Giesen, N.; ten Veldhuis, M.C. A Field Calibration Solution to Achieve High-Grade-Level Performance for Low-Cost Dual-Frequency GNSS Receiver and Antennas. Sensors 2022, 22, 2267. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W.; Kreemer, C. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos 2018, 99. [Google Scholar] [CrossRef]
- Jarrin, P.; Nocquet, J.M.; Rolandone, F.; Audin, L.; Mora-Páez, H.; Alvarado, A.; Mothes, P.; Audemard, F.; Villegas-Lanza, J.C.; Cisneros, D. Continental block motion in the Northern Andes from GPS measurements. Geophys. J. Int. 2023, 235, 1434–1464. [Google Scholar] [CrossRef]
- Herring, T.A.; Floyd, M.A.; King, R.W.; McClusky, S.C. Global Kalman Filter VLBI and GPS Analysis Program; Technical Report Release 10.6; MIT: Cambridge, MA, USA, 2015. [Google Scholar]
- Herring, T.A.; King, R.W.; Floyd, M.A.; McClusky, S.C. GPS Analysis; Technical Report Release 10.7; MIT: Cambridge, MA, USA, 2018. [Google Scholar]
- Boehm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res. Solid Earth 2006, 111, B02406. [Google Scholar] [CrossRef]
- Jarrin, P.; Nocquet, J.M.; Rolandone, F.; Mora-Páez, H.; Mothes, P.; Cisneros, D. Current motion and deformation of the Nazca Plate: New constraints from GPS measurements. Geophys. J. Int. 2022, 232, 842–863. [Google Scholar] [CrossRef]
- Noll, C.E. The crustal dynamics data information system: A resource to support scientific analysis using space geodesy. Adv. Space Res. 2010, 45, 1421–1440. [Google Scholar] [CrossRef]
- Prange, L.; Villiger, A.; Sidorov, D.; Schaer, S.; Beutler, G.; Dach, R.; Jäggi, A. Overview of CODE’s MGEX solution with the focus on Galileo. Adv. Space Res. 2020, 66, 2786–2798. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef]
- Blewitt, G. Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km. J. Geophys. Res. Solid Earth 1989, 94, 10187–10203. [Google Scholar] [CrossRef]
- Marty, J.C.; Loyer, S.; Perosanz, F.; Mercier, F.; Bracher, G.; Legrésy, B.; Portier, L.; Capdeville, H.; Lemoine, J.M.; Biancale, R. GINS: The CNES/GRGS GNSS Scientific Software. ESA Proc. 2011, 31, 8–10. [Google Scholar]
- Loyer, S.; Perosanz, F.; Mercier, F.; Capdeville, H.; Marty, J.C. Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center. J. Geod. 2012, 86, 991–1003. [Google Scholar] [CrossRef]
- Griffiths, J. Combined orbits and clocks from IGS second reprocessing. J. Geod. 2019, 93, 177–195. [Google Scholar] [CrossRef]
- Williams, S.D.P. CATS: GPS coordinate time series analysis software. GPS Solut. 2008, 12, 147–153. [Google Scholar] [CrossRef]
- Delouis, B.; Giardini, D.; Lundgren, P.; Salichon, J. Joint Inversion of InSAR, GPS, Teleseismic, and Strong-Motion Data for the Spatial and Temporal Distribution of Earthquake Slip: Application to the 1999 İzmit Mainshock. Bull. Seismol. Soc. Am. 2002, 92, 278–299. [Google Scholar] [CrossRef]
- Konca, A.O.; Leprince, S.; Avouac, J.P.; Helmberger, D.V. Rupture Process of the 1999 Mw 7.1 Duzce Earthquake from Joint Analysis of SPOT, GPS, InSAR, Strong-Motion, and Teleseismic Data: A Supershear Rupture with Variable Rupture Velocity. Bull. Seismol. Soc. Am. 2010, 100, 267–288. [Google Scholar] [CrossRef]
- Twardzik, C.; Vergnolle, M.; Sladen, A.; Avallone, A. Unravelling the contribution of early postseismic deformation using sub-daily GNSS positioning. Sci. Rep. 2019, 9, 1775. [Google Scholar] [CrossRef]
- Tsang, L.L.; Vergnolle, M.; Twardzik, C.; Sladen, A.; Nocquet, J.M.; Rolandone, F.; Agurto-Detzel, H.; Cavalié, O.; Jarrin, P.; Mothes, P. Imaging rapid early afterslip of the 2016 Pedernales earthquake, Ecuador. Earth Planet. Sci. Lett. 2019, 524, 115724. [Google Scholar] [CrossRef]
- Chupin, C.; Ballu, V.; Testut, L.; Tranchant, Y.T.; Calzas, M.; Poirier, E.; Coulombier, T.; Laurain, O.; Bonnefond, P.; Team FOAM Project. Mapping Sea Surface Height Using New Concepts of Kinematic GNSS Instruments. Remote Sens. 2020, 12, 2656. [Google Scholar] [CrossRef]
- Crowell, B.; Schmidt, D.; Bodin, P.; Vidale, J.; Gomberg, J.S.; Hartog, J.R.; Kress, V.; Melbourne, T.; Santillian, M.; Minson, S.E.; et al. Demonstration of the Cascadia G-FAST geodetic earthquake early warning system for the Nisqually, Washington, earthquake. Seismol. Res. Lett. 2016, 87, 930–943. [Google Scholar] [CrossRef]
- Mervart, L.; Weber, G.; Stürze, A.; Stöcker, D. BKG Ntrip Client—BNC Software. 2023. Federal Agency for Cartography and Geodesy (BKG), Frankfurt, Germany. Available online: https://igs.bkg.bund.de/ntrip/bnc (accessed on 2 May 2023).
- Foster, J.H.; Brooks, B.A.; Wang, D.; Carter, G.S.; Merrifield, M.A. Improving tsunami warning using commercial ships. Geophys. Res. Lett. 2012, 39, L09603. [Google Scholar] [CrossRef]
- RENAG-DC. Registry of Research Data Repositories. 2022. Available online: https://doi.org/10.17616/R31NJN5L (accessed on 6 March 2024).
Site Name | SEPT | UBLO | SOPH | NICE |
---|---|---|---|---|
Receiver | Septentrio MOSAIC-X5 | Ublox ZED-F9P | Trimble NetR9 | Trimble NetR9 |
Antenna | ArduSimple AS-ANT3BCAL | ArduSimple AS-ANT3BCAL | Ashtech Choke ring ASH701933A_M | Trimble Zephyr 2 Geodetic |
Satellite System | GPS, GLONASS, Galileo, Beidou, Navic, QZSS, SBAS | GPS, GLONASS, Galileo, Beidou, QZSS, SBAS | GPS, GLONASS, SBAS | GPS, GLONASS, Galileo, Beidou, QZSS, SBAS |
Channels | 448 | 184 | 440 | 440 |
Firmware upgrades | Free | Free | Not Free | Not Free |
Price | ∼1000 € 1 | ∼500 € 1 | ∼10,000 € 2 | ∼10,000 € 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal, M.; Jarrin, P.; Rolland, L.; Nocquet, J.-M.; Vergnolle, M.; Sakic, P. Cost-Efficient Multi-GNSS Station with Real-Time Transmission for Geodynamics Applications. Remote Sens. 2024, 16, 991. https://doi.org/10.3390/rs16060991
Vidal M, Jarrin P, Rolland L, Nocquet J-M, Vergnolle M, Sakic P. Cost-Efficient Multi-GNSS Station with Real-Time Transmission for Geodynamics Applications. Remote Sensing. 2024; 16(6):991. https://doi.org/10.3390/rs16060991
Chicago/Turabian StyleVidal, Maurin, Paul Jarrin, Lucie Rolland, Jean-Mathieu Nocquet, Mathilde Vergnolle, and Pierre Sakic. 2024. "Cost-Efficient Multi-GNSS Station with Real-Time Transmission for Geodynamics Applications" Remote Sensing 16, no. 6: 991. https://doi.org/10.3390/rs16060991
APA StyleVidal, M., Jarrin, P., Rolland, L., Nocquet, J. -M., Vergnolle, M., & Sakic, P. (2024). Cost-Efficient Multi-GNSS Station with Real-Time Transmission for Geodynamics Applications. Remote Sensing, 16(6), 991. https://doi.org/10.3390/rs16060991