Multi-Dimensional Fusion of Spectral and Polarimetric Images Followed by Pseudo-Color Algorithm Integration and Mapping in HSI Space
Abstract
:1. Introduction
2. Theoretical Basis
2.1. Spectral–Polarization Imaging Theory
2.2. Color Spaces
- Hue (H): Pertaining to color perception, it represents color purity within a range of 0 to 360°. We designate 0° as red, with 240–360° encompassing non-spectral colors discernible to the human eye. Conical longitudinal sections elucidate diverse relationships between brightness and saturation for a given hue.
- Saturation (S): It quantifies the degree to which pure color is diluted by white light, with a numerical range from 0 to 1. A color ring is delineated around a conical section, where saturation serves as the transverse axis of the radius extending through the center. Along the circumference, colors are fully saturated solids, while the center of the circle represents a neutral color with 0 saturation.
- Intensity (I): Serving as chromaticity information, intensity gauges the amount of light in the color, providing a range from light to dark, the brightness value is measured along the axis of the cone, with values between 0 and 1. Points along the axis of the cone represent completely unsaturated colors. In various grayscale levels, the brightest point is pure white, while the darkest point is pure black.
3. The Proposed Method
3.1. Overall Process
3.2. Fusion of Spectral and Polarimetric Imagery
3.3. HSI Space Fusion
- (a)
- The AoP image, containing wavelength information, is mapped to the H channel, determining the pixel’s color.
- (b)
- The DoLP image, also containing wavelength information, is mapped to the S channel, and pixel values in the S channel are subjected to thresholding. The threshold rule is expressed in Equation (10). The threshold is adjusted to normalize and maximize the saturation value in the target area while minimizing the saturation in the non-target area. This maximizes the saturation difference between different targets, thereby enhancing the fusion effect.
- (c)
- The spectral–polarization fused image is assigned to the I channel. I-channel fusion aims to improve the overall brightness of the image, facilitating image visualization.
4. Experiments and Results
4.1. Hyperspectral–Polarization Camera Dataset
- (i)
- Gray Mean denotes the average of all pixel values in an image. The calculation formula is expressed as follows:
- (ii)
- Gray Standard Deviation gauges the dispersion of pixel grayscale values, akin to the standard deviation in statistics. The formula is defined as follows:
- (iii)
- Entropy quantifies the information content within an image. The calculation formula is given as follows:
- (iv)
- Average Gradient centers on the change trend between adjacent pixels, providing insights into small details and texture structure. The formula is articulated as follows:
4.2. Online Public Datasets
5. Discussion
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gat, N. Imaging spectroscopy using tunable filters: A review. In Proceedings of the Conference on Wavelet Applications VII, Orlando, FL, USA, 26–28 April 2000; pp. 50–64. [Google Scholar]
- Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef]
- Kang, X.; Duan, P.; Li, S. Hyperspectral image visualization with edge-preserving filtering and principal component analysis. Inf. Fusion 2020, 57, 130–143. [Google Scholar] [CrossRef]
- Berns, R.S.; Imai, F.H.; Burns, P.D.; Tzeng, D.-Y. Multispectral-based color reproduction research at the Munsell Color Science Laboratory. In Proceedings of the Electronic Imaging: Processing, Printing, and Publishing in Color, Zurich, Switzerland, 18–20 May 1998; pp. 14–25. [Google Scholar]
- Thomas, J.-B. Illuminant estimation from uncalibrated multispectral images. In Proceedings of the 2015 Colour and Visual Computing Symposium (CVCS), Gjovik, Norway, 25–26 August 2015; pp. 1–6. [Google Scholar]
- Rüfenacht, D.; Fredembach, C.; Süsstrunk, S. Automatic and accurate shadow detection using near-infrared information. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 36, 1672–1678. [Google Scholar] [CrossRef]
- Sobral, A.; Javed, S.; Ki Jung, S.; Bouwmans, T.; Zahzah, E.-h. Online stochastic tensor decomposition for background subtraction in multispectral video sequences. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Santiago, Chile, 7–13 December 2015; pp. 106–113. [Google Scholar]
- Dandois, J.P.; Ellis, E.C. Remote sensing of vegetation structure using computer vision. Remote Sens. 2010, 2, 1157–1176. [Google Scholar] [CrossRef]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar] [CrossRef]
- Li, F.; Ng, M.K.; Plemmons, R.; Prasad, S.; Zhang, Q.A. Hyperspectral image segmentation, deblurring, and spectral analysis for material identification. In Proceedings of the Conference on Visual Information Processing XIX, Orlando, FL, USA, 6–7 April 2010. [Google Scholar]
- Li, N.; Gong, C.G.; Zhao, H.J.; Ma, Y. Space Target Material Identification Based on Graph Convolutional Neural Network. Remote Sens. 2023, 15, 27. [Google Scholar] [CrossRef]
- Bosman, H.H.; Iacca, G.; Tejada, A.; Wörtche, H.J.; Liotta, A. Spatial anomaly detection in sensor networks using neighborhood information. Inf. Fusion 2017, 33, 41–56. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, X.; Li, S.; Li, K.; Li, J.; Benediktsson, J.A. Hyperspectral anomaly detection with attribute and edge-preserving filters. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5600–5611. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, H.; Wang, J.; Zhang, Y.-L.; Wu, Y.; Wang, C.; Fu, Q.; Jiang, H. Analysis and experiment of polarization characteristics of Off-axis freeform optical system. Opt. Laser Technol. 2023, 163, 109383. [Google Scholar] [CrossRef]
- Wang, J.; Shi, H.; Liu, J.; Li, Y.; Fu, Q.; Wang, C.; Jiang, H. Compressive space-dimensional dual-coded hyperspectral polarimeter (CSDHP) and interactive design method. Opt. Express 2023, 31, 9886–9903. [Google Scholar] [CrossRef]
- Nayar, S.K.; Fang, X.-S.; Boult, T. Separation of reflection components using color and polarization. Int. J. Comput. Vis. 1997, 21, 163–186. [Google Scholar] [CrossRef]
- Wen, S.J.; Zheng, Y.Q.; Lu, F. Polarization Guided Specular Reflection Separation. IEEE Trans. Image Process. 2021, 30, 7280–7291. [Google Scholar] [CrossRef] [PubMed]
- Wolff, L.B. Polarization-based material classification from specular reflection. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 1059–1071. [Google Scholar] [CrossRef]
- Guo, F.; Zhu, J.; Huang, L.; Li, H.; Deng, J.; Jiang, H.; Hou, X. Enhancing Spatial Debris Material Classifying through a Hierarchical Clustering-Fuzzy C-Means Integration Approach. Appl. Sci. 2023, 13, 4754. [Google Scholar] [CrossRef]
- Partridge, M.; Saull, R. Three-dimensional surface reconstruction using emission polarization. In Proceedings of the Image and Signal Processing for Remote Sensing II, Paris, France, 25–28 September 1995; pp. 92–103. [Google Scholar]
- Li, X.; Liu, Z.; Cai, Y.; Pan, C.; Song, J.; Wang, J.; Shao, X. Polarization 3D imaging technology: A review. Front. Phys. 2023, 11, 341. [Google Scholar] [CrossRef]
- Goudail, F.; Terrier, P.; Takakura, Y.; Bigué, L.; Galland, F.; DeVlaminck, V. Target detection with a liquid-crystal-based passive Stokes polarimeter. Appl. Opt. 2004, 43, 274–282. [Google Scholar] [CrossRef]
- Romano, J.M.; Rosario, D.; McCarthy, J. Day/night polarimetric anomaly detection using SPICE imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 5014–5023. [Google Scholar] [CrossRef]
- Zhou, P.-C.; Liu, C.-C. Camouflaged target separation by spectral-polarimetric imagery fusion with shearlet transform and clustering segmentation. In Proceedings of the International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Sensors and Applications, Beijing, China , 21 August 2013; pp. 376–383. [Google Scholar]
- Islam, M.N.; Tahtali, M.; Pickering, M. Man-made object separation using polarimetric imagery. In Proceedings of the SPIE Future Sensing Technologies, Tokyo, Japan, 12 November 2019; pp. 190–196. [Google Scholar]
- Sano, I.; Mukai, S.; Takashima, T. Multispectral polarization measurements of atmospheric aerosols. Adv. Space Res. 1997, 19, 1379–1382. [Google Scholar] [CrossRef]
- Guo, H.; Gu, X.-F.; Xie, D.-H.; Yu, T.; Meng, Q.-Y. A review of atmospheric aerosol research by using polarization remote sensing. Spectrosc. Spectr. Anal. 2014, 34, 1873–1880. [Google Scholar]
- Zhao, Y.; Zhang, L.; Pan, Q. Spectropolarimetric imaging for pathological analysis of skin. Appl. Opt. 2009, 48, D236–D246. [Google Scholar] [CrossRef]
- Bartlett, B.D.; Schlamm, A. Anomaly detection with varied ground sample distance utilizing spectropolarimetric imagery collected using a liquid crystal tunable filter. Opt. Eng. 2011, 50, 081207–081209. [Google Scholar] [CrossRef]
- Ibrahim, I.; Yuen, P.; Hong, K.; Chen, T.; Soori, U.; Jackman, J.; Richardson, M. Illumination invariance and shadow compensation via spectro-polarimetry technique. Opt. Eng. 2012, 51, 107004. [Google Scholar] [CrossRef]
- Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.R.; Kuemmerle, T.; Meyfroidt, P.; Mitchard, E.T.A.; et al. A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring. Remote Sens. 2016, 8, 23. [Google Scholar] [CrossRef]
- Ghassemian, H. A review of remote sensing image fusion methods. Inf. Fusion 2016, 32, 75–89. [Google Scholar] [CrossRef]
- Mo, Y.J.; Wu, Y.; Yang, X.N.; Liu, F.L.; Liao, Y.J. Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing 2022, 493, 626–646. [Google Scholar] [CrossRef]
- Le Hors, L.; Hartemann, P.; Breugnot, S. Multispectral polarization active imager in the visible band. In Proceedings of the Laser Radar Technology and Applications V, Orlando, FL, USA, 5 September 2000; pp. 380–389. [Google Scholar]
- Olsen, R.C.; Eyler, M.; Puetz, A.M.; Esterline, C. Initial results and field applications of a polarization imaging camera. In Proceedings of the Polarization Science and Remote Sensing IV, San Diego, CA, USA, 3–4 August 2009; pp. 121–130. [Google Scholar]
- Azzam, R.; Coffeen, D.L. Optical Polarimetry: Instrumentation & Applications. In Proceedings of the Society of Photo-Optical Instrumentation Engineers in Conjunction with the IEEE Computer Society International Optical Computing Conference 77, San Diego, CA, USA, 23–24 August 1977. [Google Scholar]
- Wolff, L.B. Polarization vision: A new sensory approach to image understanding. Image Vis. Comput. 1997, 15, 81–93. [Google Scholar] [CrossRef]
- Toet, A. Natural colour mapping for multiband nightvision imagery. Inf. Fusion 2003, 4, 155–166. [Google Scholar] [CrossRef]
- Shen, H.; Zhou, P. Near natural color polarization imagery fusion approach. In Proceedings of the 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 16–18 October 2010; pp. 2802–2805. [Google Scholar]
- Tyo, J.S.; Ratliff, B.M.; Alenin, A.S. Adapting the HSV polarization-color mapping for regions with low irradiance and high polarization. Opt. Lett. 2016, 41, 4759–4762. [Google Scholar]
- Yang, F.; Xie, C. Color contrast enhancement method of infrared polarization fused image. In Proceedings of the AOPC 2015: Image Processing and Analysis, Beijing, China, 5–7 May 2015; pp. 537–541. [Google Scholar]
- Aïnouz, S.; Zallat, J.; de Martino, A.; Collet, C. Physical interpretation of polarization-encoded images by color preview. Opt. Express 2006, 14, 5916–5927. [Google Scholar] [CrossRef]
- Zhao, Y.-q.; Zhang, L.; Zhang, D.; Pan, Q. Object separation by polarimetric and spectral imagery fusion. Comput. Vis. Image Underst. 2009, 113, 855–866. [Google Scholar] [CrossRef]
- Song, Y.E.; Weiping, T.; Xiaobing, S.U.N.; Yonghua, F. Characterization of the Polarized Remote Sensing Images Using IHS Color System. Remote Sens. Inf. 2006, 11–13. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, P.; Pan, Q. Unsupervised spectropolarimetric imagery clustering fusion. J. Appl. Remote Sens. 2009, 3, 033535. [Google Scholar]
- Zhao, Y.; Zhang, G.; Jie, F.; Gao, S.; Chen, C.; Pan, Q. Unsupervised classification of spectropolarimetric data by region-based evidence fusion. IEEE Geosci. Remote Sens. Lett. 2011, 8, 755–759. [Google Scholar] [CrossRef]
- Solomon, J.E. Polarization imaging. Appl. Opt. 1981, 20, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Liu, X.; Wang, L.; Zhan, J.; Zhang, S.; Zhang, T.; Li, Z.; Duan, J.; Li, Y.; Jiang, H. Analysis of target surface polarization characteristics and inversion of complex refractive index based on three-component model optimization. Opt. Laser Technol. 2023, 162, 109225. [Google Scholar] [CrossRef]
- Fu, Q.; Liu, X.; Yang, D.; Zhan, J.; Liu, Q.; Zhang, S.; Wang, F.; Duan, J.; Li, Y.; Jiang, H. Improvement of pBRDF model for target surface based on diffraction and transmission effects. Remote Sens. 2023, 15, 3481. [Google Scholar] [CrossRef]
- Qu, G.; Zhang, D.; Yan, P. Information measure for performance of image fusion. Electron. Lett. 2002, 38, 1. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, J.; Huang, L.; Zhang, Y.; Wang, H.; Li, H.; Guo, F.; Deng, J. Hyperspectral Channel-Modulated Static Birefringent Fourier Transform Imaging Spectropolarimeter with Zoomable Spectral Resolution. In Proceedings of the Photonics, Orlando, FL, USA, 12–16 November 2023; p. 950. [Google Scholar]
Objective Metrics | EN | AG | ||
---|---|---|---|---|
Original Image | 88.04 | 53.38 | 7.29 | 4.87 |
PCA | 85.79 | 47.73 | 7.22 | 6.68 |
EWP | 88.07 | 47.16 | 7.21 | 6.11 |
DoLP | 27.43 | 23.71 | 5.93 | 8.58 |
AoP | 44.08 | 96.42 | 0.67 | 36.85 |
S0 Fused | 96.42 | 71.47 | 7.46 | 8.17 |
Objective Metrics | EN | AG | ||
---|---|---|---|---|
Original Image | 57.93 | 42.96 | 3.88 | 3.99 |
PCA | 54.61 | 43.08 | 6.89 | 2.09 |
EWP | 55.24 | 42.21 | 6.76 | 2.59 |
DoLP | 23.22 | 27.98 | 5.47 | 4.25 |
AoP | 190.17 | 111.03 | 0.82 | 32.93 |
S0 Fused | 100.99 | 60.77 | 7.29 | 4.10 |
Objective Metrics | EN | AG | ||
---|---|---|---|---|
Original Image | 43.06 | 40.42 | 6.40 | 6.04 |
PCA | 37.91 | 44.47 | 5.99 | 2.45 |
EWP | 75.39 | 39.66 | 6.68 | 8.56 |
DoLP | 48.39 | 29.01 | 6.65 | 13.50 |
AoP | 218.62 | 89.17 | 0.59 | 24.74 |
S0 Fused | 130.25 | 50.98 | 7.29 | 11.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Zhu, J.; Huang, L.; Li, F.; Zhang, N.; Deng, J.; Li, H.; Zhang, X.; Zhao, Y.; Jiang, H.; et al. Multi-Dimensional Fusion of Spectral and Polarimetric Images Followed by Pseudo-Color Algorithm Integration and Mapping in HSI Space. Remote Sens. 2024, 16, 1119. https://doi.org/10.3390/rs16071119
Guo F, Zhu J, Huang L, Li F, Zhang N, Deng J, Li H, Zhang X, Zhao Y, Jiang H, et al. Multi-Dimensional Fusion of Spectral and Polarimetric Images Followed by Pseudo-Color Algorithm Integration and Mapping in HSI Space. Remote Sensing. 2024; 16(7):1119. https://doi.org/10.3390/rs16071119
Chicago/Turabian StyleGuo, Fengqi, Jingping Zhu, Liqing Huang, Feng Li, Ning Zhang, Jinxin Deng, Haoxiang Li, Xiangzhe Zhang, Yuanchen Zhao, Huilin Jiang, and et al. 2024. "Multi-Dimensional Fusion of Spectral and Polarimetric Images Followed by Pseudo-Color Algorithm Integration and Mapping in HSI Space" Remote Sensing 16, no. 7: 1119. https://doi.org/10.3390/rs16071119
APA StyleGuo, F., Zhu, J., Huang, L., Li, F., Zhang, N., Deng, J., Li, H., Zhang, X., Zhao, Y., Jiang, H., & Hou, X. (2024). Multi-Dimensional Fusion of Spectral and Polarimetric Images Followed by Pseudo-Color Algorithm Integration and Mapping in HSI Space. Remote Sensing, 16(7), 1119. https://doi.org/10.3390/rs16071119