Influences of Climate Variability on Land Use and Land Cover Change in Rural South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. Land Cover Data
2.2.2. Climate Data
2.3. Method
2.3.1. Land Cover Analysis
2.3.2. Rainfall and Temperature
2.3.3. Drought
2.3.4. Climate Variability Influence on Agricultural Land Cover
3. Results
3.1. Land Cover Change Trends
3.2. Rate and Pattern of Land Cover Change
3.2.1. Interval Level
3.2.2. Category Level
3.2.3. Transitional Level
3.3. Rainfall and Temperature Anomalies
3.4. Standardized Precipitation Evapotranspiration Index (SPEI)
3.5. Climate Variability Influence on Agricultural Land Change
4. Discussion
4.1. Agricultural Land Change and Climate Variability
4.2. Overall Land Cover Change
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Morton, J.F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl. Acad. Sci. USA 2007, 104, 19680–19685. [Google Scholar] [CrossRef] [PubMed]
- Savo, V.; Lepofsky, D.; Benner, J.P.; Kohfeld, K.E.; Bailey, J.; Lertzman, K. Observations of climate change among subsistence-oriented communities around the world. Nat. Clim. Chang. 2016, 6, 462–473. [Google Scholar] [CrossRef]
- Blair, D.; Shackleton, C.M.; Mograbi, P.J. Cropland abandonment in South African smallholder communal lands: Land cover change (1950–2010) and farmer perceptions of contributing factors. Land 2018, 7, 121. [Google Scholar] [CrossRef]
- Hebinck, P.; Mtati, N.; Shackleton, C. More than just fields: Reframing deagrarianisation in landscapes and livelihoods. J. Rural Stud. 2018, 61, 323–334. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Reisinger, A. IPCC Fourth Assessment Report; IPCC: Geneva, Switzerland, 2007; Volume 2007, p. 044023. [Google Scholar]
- Engelbrecht, F.; Adegoke, J.; Bopape, M.J.; Naidoo, M.; Garland, R.; Thatcher, M.; McGregor, J.; Katzfey, J.; Werner, M.; Ichoku, C.; et al. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 2015, 10, 085004. [Google Scholar] [CrossRef]
- Blakeley, S.L.; Sweeney, S.; Husak, G.; Harrison, L.; Funk, C.; Peterson, P.; Osgood, D.E. Identifying precipitation and reference evapotranspiration trends in West Africa to support drought insurance. Remote Sens. 2020, 12, 2432. [Google Scholar] [CrossRef]
- Abu Arra, A.; Şişman, E. Characteristics of hydrological and meteorological drought based on intensity-duration-frequency (IDF) curves. Water 2023, 15, 3142. [Google Scholar] [CrossRef]
- Hayati, D.; Yazdanpanah, M.; Karbalaee, F. Coping with drought: The case of poor farmers of south Iran. Psychol. Dev. Soc. 2010, 22, 361–383. [Google Scholar] [CrossRef]
- van der Valk, M.; Keenan, P. Climate Change, Water Stress, Conflict and Migration; UNESCO: The Hague, The Netherlands, 2012. [Google Scholar]
- Eneyew, A.; Bekele, W. Determinants of livelihood strategies in Wolaita, southern Ethiopia. Agric. Res. Rev. 2012, 1, 153–161. [Google Scholar]
- Gebru, G.W.; Beyene, F. Rural household livelihood strategies in drought-prone areas: A case of Gulomekeda District, eastern zone of Tigray National Regional State, Ethiopia. J. Dev. Agric. Econ. 2012, 4, 158–168. [Google Scholar]
- Gonçalves, P.H.S.; da Cunha Melo, C.V.S.; de Assis Andrade, C.; de Oliveira, D.V.B.; de Moura Brito Junior, V.; Rito, K.F.; de Medeiros, P.M.; Albuquerque, U.P. Livelihood strategies and use of forest resources in a protected area in the Brazilian semiarid. Environ. Dev. Sustain. 2021, 24, 1–21. [Google Scholar] [CrossRef]
- Nkonki-Mandleni, B.; Ogunkoya, F.T.; Omotayo, A.O. Socioeconomic factors influencing livestock production among smallholder farmers in the free state province of south Africa. Int. J. Entrep. 2019, 23, 1–17. [Google Scholar]
- Kostov, P.; Lingard, J. Subsistence farming in transitional economies: Lessons from Bulgaria. J. Rural Stud. 2002, 18, 83–94. [Google Scholar] [CrossRef]
- Ramjeawon, M.; Demlie, M.; Toucher, M.L.; Janse van Rensburg, S. Analysis of three decades of land cover changes in the Maputaland Coastal Plain, South Africa. Koedoe Afr. Prot. Area Conserv. Sci. 2020, 62, a1642. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Ewert, F.; Reginster, I.; Leemans, R.; Carter, T.R. Future scenarios of European agricultural land use: II. Projecting changes in cropland and grassland. Agric. Ecosyst. Environ. 2005, 107, 117–135. [Google Scholar] [CrossRef]
- Jewitt, D.; Goodman, P.S.; Erasmus, B.F.; O’Connor, T.G.; Witkowski, E.T. Systematic land-cover change in KwaZulu-Natal, South Africa: Implications for biodiversity. S. Afr. J. Sci. 2015, 111, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mogonong, B.P.; Fisher, J.T.; Furniss, D.; Jewitt, D. Land cover change in marginalised landscapes of South Africa (1984–2014): Insights into the influence of socio-economic and political factors. S. Afr. J. Sci. 2023, 119, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mucina, L.; Rutherford, M. The Vegetation of South Africa, Lesotho and Swaziland; Strelitzia 19; Memoirs of the Botanical Survey of South Africa; South African National Biodiversity Institute: Pretoria, South Africa, 2006. [Google Scholar]
- Dovie, D.B.; Shackleton, C.M.; Witkowski, E. Valuation of communal area livestock benefits, rural livelihoods and related policy issues. Land Use Policy 2006, 23, 260–271. [Google Scholar] [CrossRef]
- Twine, W.; Saphugu, V.; Moshe, D. Harvesting of communal resources by ‘outsiders’ in rural South Africa: A case of xenophobia or a real threat to sustainability? Int. J. Sustain. Dev. World Ecol. 2003, 10, 263–274. [Google Scholar] [CrossRef]
- Ramutsindela, M. Resilient geographies: Land, boundaries and the consolidation of the former bantustans in post-1994 South Africa. Geogr. J. 2007, 173, 43–55. [Google Scholar] [CrossRef]
- Shackleton, C.; Shackleton, S. The importance of non-timber forest products in rural livelihood security and as safety nets: A review of evidence from South Africa. S. Afr. J. Sci. 2004, 100, 658–664. [Google Scholar]
- Ragie, F.H.; Olivier, D.W.; Hunter, L.M.; Erasmus, B.F.; Vogel, C.; Collinson, M.; Twine, W. A portfolio perspective of rural livelihoods in Bushbuckridge, South Africa. S. Afr. J. Sci. 2020, 116, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mutanga, O.; Kumar, L. Google earth engine applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G., Jr. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Li, B.; Zhou, W.; Zhao, Y.; Ju, Q.; Yu, Z.; Liang, Z.; Acharya, K. Using the SPEI to assess recent climate change in the Yarlung Zangbo River Basin, South Tibet. Water 2015, 7, 5474–5486. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Kumar, K.K.; Kumar, K.R.; Rakhecha, P. Comparison of Penman and Thornthwaite methods of estimating potential evapotranspiration for Indian conditions. Theor. Appl. Climatol. 1987, 38, 140–146. [Google Scholar] [CrossRef]
- Shackleton, C.; Mograbi, P.; Drimie, S.; Fay, D.; Hebinck, P.; Hoffman, M.; Maciejewski, K.; Twine, W. Deactivation of field cultivation in communal areas of South Africa: Patterns, drivers and socio-economic and ecological consequences. Land Use Policy 2019, 82, 686–699. [Google Scholar] [CrossRef]
- Zaveri, E.; Russ, J.; Damania, R. Rainfall anomalies are a significant driver of cropland expansion. Proc. Natl. Acad. Sci. USA 2020, 117, 10225–10233. [Google Scholar] [CrossRef] [PubMed]
- Giannecchini, M.; Twine, W.; Vogel, C. Land-cover change and human–environment interactions in a rural cultural landscape in South Africa. Geogr. J. 2007, 173, 26–42. [Google Scholar] [CrossRef]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Moyo, B.; Ravhuhali, K.E. Abandoned croplands: Drivers and secondary succession trajectories under livestock grazing in communal areas of South Africa. Sustainability 2022, 14, 6168. [Google Scholar] [CrossRef]
- Ebhuoma, E.E.; Donkor, F.K.; Ebhuoma, O.O.; Leonard, L.; Tantoh, H.B. Subsistence farmers’ differential vulnerability to drought in Mpumalanga province, South Africa: Under the political ecology spotlight. Cogent Soc. Sci. 2020, 6, 1792155. [Google Scholar] [CrossRef]
- Yengoh, G.T.; Armah, F.A.; Onumah, E.E.; Odoi, J.O. Trends in agriculturally-relevant rainfall characteristics for small-scale agriculture in Northern Ghana. J. Agric. Sci. 2010, 2, 3. [Google Scholar] [CrossRef]
- Lewis, D.; Bell, S.D.; Fay, J.; Bothi, K.L.; Gatere, L.; Kabila, M.; Mukamba, M.; Matokwani, E.; Mushimbalume, M.; Moraru, C.I.; et al. Community Markets for Conservation (COMACO) links biodiversity conservation with sustainable improvements in livelihoods and food production. Proc. Natl. Acad. Sci. USA 2011, 108, 13957–13962. [Google Scholar] [CrossRef]
- Nyaupane, G.P.; Poudel, S. Linkages among biodiversity, livelihood, and tourism. Ann. Tour. Res. 2011, 38, 1344–1366. [Google Scholar] [CrossRef]
- Cobbinah, P.B.; Black, R.; Thwaites, R. Biodiversity conservation and livelihoods in rural Ghana: Impacts and coping strategies. Environ. Dev. 2015, 15, 79–93. [Google Scholar] [CrossRef]
- Dudley, N.; Eufemia, L.; Fleckenstein, M.; Periago, M.E.; Petersen, I.; Timmers, J.F. Grasslands and savannahs in the UN Decade on Ecosystem Restoration. Restor. Ecol. 2020, 28, 1313–1317. [Google Scholar] [CrossRef]
- Venter, Z.S.; Scott, S.L.; Desmet, P.G.; Hoffman, M.T. Application of Landsat-derived vegetation trends over South Africa: Potential for monitoring land degradation and restoration. Ecol. Indic. 2020, 113, 106206. [Google Scholar] [CrossRef]
- Skowno, A.L.; Thompson, M.W.; Hiestermann, J.; Ripley, B.; West, A.G.; Bond, W.J. Woodland expansion in South African grassy biomes based on satellite observations (1990–2013): General patterns and potential drivers. Glob. Chang. Biol. 2017, 23, 2358–2369. [Google Scholar] [CrossRef] [PubMed]
- White, J.D.; Stevens, N.; Fisher, J.T.; Archibald, S.; Reynolds, C. Nature-reliant, low-income households face the highest rates of woody-plant encroachment in South Africa. People Nat. 2022, 4, 1020–1031. [Google Scholar] [CrossRef]
- Stevens, N.; Lehmann, C.E.R.; Murphy, B.P.; Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol. 2017, 23, 235–244. [Google Scholar] [CrossRef]
- Shackleton, C.M.; Shackleton, S.E. Household wealth status and natural resource use in the Kat River valley, South Africa. Ecol. Econ. 2006, 57, 306–317. [Google Scholar] [CrossRef]
Land Cover Category | Description |
---|---|
Waterbody | Surfaces covered by water such as rivers, lakes, and dams. |
Agriculture | Areas that are actively cultivated, largely for subsistence purposes. |
Built up | Urban and rural areas covered by man-made features such as buildings, representing human settlement. |
Woody vegetation | Areas covered by natural or secondary woody vegetation such as woodlands and shrubland. |
Grasslands | Areas that are covered by natural grasslands. |
Bare ground | Areas of exposed soil, usually showing signs of erosion. |
Pan | Dry flat areas covered by soil with a high salt concentration and temporarily inundated by water. |
Plantation | Areas covered by planted trees, usually for commercial purposes. |
Fallow | Areas that were previously farmed and are now covered by either secondary grasslands or woody vegetation. |
Rock | Areas that are rocky and not covered by vegetation. |
Other | Areas covered by other land cover classes such as roads and railways. |
SPEI Values | Moisture Category |
---|---|
2 and above | Extremely wet |
1.5 to 1.99 | Very wet |
1 to 1.49 | Moderately wet |
−0.99 to 0.99 | Near normal |
−1 to −1.49 | Moderately dry |
−1.50 to −1.99 | Severely dry |
−2 and less | Extremely dry |
Case Study Area | Variable | Estimates | Std. Error | z-Value | p-Value |
---|---|---|---|---|---|
Umhlabuyalingana | Rainfall anomaly | 0.01 | 0.001 | 7.05 | <0.001 |
SPEI | −3.08 | 0.39 | −7.84 | <0.001 | |
Maximum temperature anomaly | 0.53 | 0.18 | 2.89 | 0.004 | |
Joe Morolong | Rainfall anomaly | 0.01 | 0.004 | 1.59 | 0.11 |
SPEI | −3.46 | 1.52 | −2.27 | 0.02 | |
Maximum temperature anomaly | −3.74 | 1.22 | −3.07 | 0.002 | |
Mangaung | Rainfall anomaly | −0.01 | 0.001 | −16.98 | <0.001 |
SPEI | 1.56 | 0.22 | 7.10 | <0.001 | |
Maximum temperature anomaly | 0.23 | 0.37 | 0.62 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mogonong, B.P.; Twine, W.; Feig, G.T.; Van der Merwe, H.; Fisher, J.T. Influences of Climate Variability on Land Use and Land Cover Change in Rural South Africa. Remote Sens. 2024, 16, 1200. https://doi.org/10.3390/rs16071200
Mogonong BP, Twine W, Feig GT, Van der Merwe H, Fisher JT. Influences of Climate Variability on Land Use and Land Cover Change in Rural South Africa. Remote Sensing. 2024; 16(7):1200. https://doi.org/10.3390/rs16071200
Chicago/Turabian StyleMogonong, Buster Percy, Wayne Twine, Gregor Timothy Feig, Helga Van der Merwe, and Jolene T. Fisher. 2024. "Influences of Climate Variability on Land Use and Land Cover Change in Rural South Africa" Remote Sensing 16, no. 7: 1200. https://doi.org/10.3390/rs16071200
APA StyleMogonong, B. P., Twine, W., Feig, G. T., Van der Merwe, H., & Fisher, J. T. (2024). Influences of Climate Variability on Land Use and Land Cover Change in Rural South Africa. Remote Sensing, 16(7), 1200. https://doi.org/10.3390/rs16071200