Time–Frequency Signal Integrity Monitoring Algorithm Based on Temperature Compensation Frequency Bias Combination Model
Abstract
:1. Introduction
2. Model and Method
2.1. Characteristic Analysis
2.2. Model Construction
2.3. Integrity Monitoring Algorithm
2.3.1. Algorithm Overview
2.3.2. Algorithm Implementation
2.4. Model Parameter Calculation Criteria
3. Data and Strategy
3.1. Experimental Data
3.2. Experimental Strategy
4. Experiment and Results Analysis
4.1. Calculation of Experimental Parameters
4.1.1. Calculation of Model Parameters
4.1.2. Calculation of Experimental Parameters
4.1.3. Calculation of Fault Simulation Parameters
4.2. Evaluation of Parameter Adaptability
4.2.1. Experimental Scene
4.2.2. Experimental Results
4.3. Comparative Experiment of Algorithm
4.3.1. Traditional Monitoring Algorithm
4.3.2. Experimental Scene and Parameter Setting
4.3.3. Experimental Results
5. Conclusions
- (1)
- Under the condition that the PFA is 10−3 and the PMD is 10−3, the typical value of the MDB is as follows: the phase transition is 86 ps, the STD of noise deterioration is 88 ps, and the frequency bias is 2 × 10−15.
- (2)
- Based on the typical value of the MDB and the calculated integrity monitoring parameters, the time difference measurement data of different links is used to construct a simulation experiment of the time–frequency signal fault of the corresponding link. The experimental results show that the algorithm in this paper can effectively detect, identify, and alarm the phase transition fault, the noise deterioration fault, and the frequency transition fault.
- (3)
- Additionally, the model and the integrity monitoring parameters developed in this paper exhibit high adaptability, making it directly applicable to the integrity monitoring of time–frequency signals across various links.
- (4)
- The traditional monitoring algorithm is used for fault simulation experiments, and the experimental results are compared with the experimental results of the algorithm in this paper. The experimental results show that the algorithm proposed in this paper greatly improves the effectiveness, adaptability, and real-time performance of time–frequency signal integrity monitoring.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, S.; Gao, M.; Huang, Z.; Jin, X.; Li, K. Satellite integrity monitoring for satellite-based augmentation system: An improved covariance-based method. Satell. Navig. 2022, 3, 9. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, J. Real-time integrity monitoring for a wide area precise positioning system. Satell. Navig. 2020, 1, 24. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, L. Multi-level autonomous integrity monitoring method for multi-source PNT resilient fusion navigation. Satell. Navig. 2023, 4, 21. [Google Scholar] [CrossRef]
- Zabalegui, P.; De Miguel, G.; Perez, A.; Mendizabal, J.; Goya, J.; Adin, I. A Review of the Evolution of the Integrity Methods Applied in GNSS. IEEE Access 2020, 8, 45813–45824. [Google Scholar] [CrossRef]
- Uwineza, J.-B.; Farrell, J.A. RAIM and Failure Mode Slope: Effects of Increased Number of Measurements and Number of Faults. Sensors 2023, 23, 4947. [Google Scholar] [CrossRef]
- Martin, A. RAIM Performance Analysis of Three Typical Low-Orbit Augmentation Constellations Combined with BDS Applications. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 678–686. [Google Scholar] [CrossRef]
- Liu, C.; Cao, Y.; Zhang, G.; Gao, W.; Chen, Y.; Lu, J.; Liu, C.; Zhao, H.; Li, F. Design and Performance Analysis of BDS-3 Integrity Concept. Remote Sens. 2021, 13, 2860. [Google Scholar] [CrossRef]
- Meng, Q.; Zhuang, Y.; Li, S. Implementation and Performance Analysis of Constellation Dynamic Selection in Multi-Constellation RAIM. Micromachines 2022, 13, 1455. [Google Scholar] [CrossRef]
- Blanch, J.; Walter, T. An Evaluation of the Advanced RAIM Threat Model. In Proceedings of the 2023 IEEE/ION Position Location and Navigation Symposium (PLANS), Monterey, CA, USA, 24–27 April 2023; pp. 408–413. [Google Scholar] [CrossRef]
- Chen, L.; Gao, W.; Hu, Z.; Cao, Y.; Pei, L.; Liu, C.; Zhou, W.; Liu, X.; Chen, L.; Yang, R. BDS-3 Integrity Risk Modeling and Probability Evaluation. Remote Sens. 2022, 14, 944. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, X. GNSS Fault Detection and Exclusion Based on Virtual Pseudorange-Based Consistency Check Method. Chin. J. Electron. 2020, 29, 41–48. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, Y.; Cheng, C.; Li, S.; Li, Z. Research on Satellite Selection Strategy for Receiver Autonomous Integrity Monitoring Applications. Remote Sens. 2021, 13, 1725. [Google Scholar] [CrossRef]
- Ma, X.; Yu, K.; He, X.; Li, Q.; Zhao, L.; Wang, H. Development and evaluation of a generalized model of RAIM availability for single-, dual- and multi-satellite faults. Meas. Sci. Technol. 2022, 33, 065022. [Google Scholar] [CrossRef]
- Sun, R.; Xu, C.; Huang, G.; Lan, X.; Wu, M. Multiple epochs solution separation RAIM algorithm considering alarm time. Syst. Eng. Electron. 2023, 45, 1469–1475. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Q.; Zhang, S.; Zheng, N.; Liu, K. A state-domain robust autonomous integrity monitoring with an extrapolation method for single receiver positioning in the presence of slowly growing fault. Satell. Navig. 2023, 4, 20. [Google Scholar] [CrossRef]
- Sun, Y. RAIM-NET: A Deep Neural Network for Receiver Autonomous Integrity Monitoring. Remote Sens. 2020, 12, 1503. [Google Scholar] [CrossRef]
- Bhattacharyya, S. A computationally efficient Kalman filter-based RAIM algorithm for aircraft navigation with GPS and NavIC. Meas. Sci. Technol. 2023, 34, 125106. [Google Scholar] [CrossRef]
- Ren, Z.; Lyu, D.; Gong, H.; Peng, J.; Huang, X.; Sun, G. Continuous time and frequency transfer using robust GPS PPP integer ambiguity resolution method. GPS Solut. 2023, 27, 82. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J. Integrity monitoring scheme for single-epoch GNSS PPP-RTK positioning. Satell. Navig. 2023, 4, 10. [Google Scholar] [CrossRef]
- Wang, S.; Zhan, X.; Xiao, Y.; Zhai, Y. Integrity Monitoring of PPP-RTK Based on Multiple Hypothesis Solution Separation. In Proceedings of the 13th China Satellite Navigation Conference (CSNC)—Digital Economy and Intelligent Navigation, Beijing, China, 25–27 May 2022; pp. 321–331. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; El-Mowafy, A.; Rizos, C. Integrity monitoring scheme for undifferenced and uncombined multi-frequency multi-constellation PPP-RTK. GPS Solut. 2023, 27, 68. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J. GNSS PPP-RTK: Integrity monitoring method considering wrong ambiguity fixing. GPS Solut. 2024, 28, 30. [Google Scholar] [CrossRef]
- Gioia, C.; Borio, D. Multi-Layer Defences for Robust GNSS Timing Retrieval. Sensors 2021, 21, 7787. [Google Scholar] [CrossRef]
- Gioia, C.; Borio, D. Interference Mitigation and T-RAIM for Robust GNSS Timing; European Commission, Joint Research Centre: Ispra, Italy, 2021; pp. 70–79. [Google Scholar]
- Gioia, C. T-RAIM Approaches: Testing with Galileo Measurements. Sensors 2023, 23, 2283. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, L.; Shu, B.; Han, Q.; Li, L.; Yi, C.; Xu, H. Evaluation of the availability of BDS ARAIM. Acta Geod. Cartogr. Sin. 2021, 50, 879–890. [Google Scholar]
- Cozzens, T. FAA Researching Advanced RAIM for GPS + Galileo Approaches. GPS World 2023, 34, 11. [Google Scholar]
- Patel, J.; Pervan, B. Accurate GPS LNAV parameters and clock biases for ARAIM offline monitoring. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 4313–4332. [Google Scholar] [CrossRef]
- Gao, W.; Yue, F.; Xu, Z.; Liu, P.; Li, D. Integrity Monitoring Methods of BDS Receiver Based on Inertial Assistance. Navig. Position Timing 2021, 8, 107–113. [Google Scholar] [CrossRef]
- Wu, K. Research on Autonomous Integrity Monitoring Technology of GNSS/INS Integrated Navigation Receiver. Master’s Thesis, National University of Defense Technology, Changsha, China, 2021. [Google Scholar]
- Xia, J.; Wang, S.; Jin, X.; Zeng, Q. Wi-Fi Assisted BDS Positioning Integrity Monitoring in Urban Cities. Geomat. Spat. Inf. Technol. 2022, 45, 15–17,23. [Google Scholar] [CrossRef]
- Zheng, H.; Atia, M.; Yanikomeroglu, H. Analysis of a HAPS-Aided GNSS in Urban Areas Using a RAIM Algorithm. IEEE Open J. Commun. Soc. 2023, 4, 226–238. [Google Scholar] [CrossRef]
- Jiang, H.; Li, T.; Song, D.; Shi, C. An Effective Integrity Monitoring Scheme for GNSS/INS/Vision Integration Based on Error State EKF Model. IEEE Sens. J. 2022, 22, 7063–7073. [Google Scholar] [CrossRef]
- Li, Y.; Xue, Y.; Chen, R.; Liu, Y. Research on Integrity Monitoring Method of Time-Frequency Signal. In Proceedings of the 3rd IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 October 2018. [Google Scholar]
- Wu, Y. Key Technologies of GNSS Time Scale. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2016. [Google Scholar]
- Wu, Y.; Zhu, X.; Huang, Y.; Sun, G.; Ou, G. Optimal Observation Intervals for Clock Prediction Based on the Mathematical Model Method. IEEE Trans. Instrum. Meas. 2016, 65, 132–143. [Google Scholar] [CrossRef]
- Li, X. Precision Measurement of Time and Frequency Signals; Science Press: Beijing, China, 2010; pp. 15–17. [Google Scholar]
- Baghdady, E.J.; Lincoln, R.N.; Nelin, B.D. Short-term frequency stability: Characterization, theory, and measurement. Proc. IEEE 1965, 53, 704–722. [Google Scholar] [CrossRef]
- Lesage, P.; Audoin, C. Characterization and measurement of time and frequency stability. Radio Sci. 1979, 14, 521–539. [Google Scholar] [CrossRef]
- Stein, S.R. Precision Frequency Control. In Frequency and Time-Their Measurement and Characterization; Gerber, E.A., Ballato, A., Eds.; Academic Press: New York, NY, USA, 1985; pp. 191–416. [Google Scholar]
- Li, Z. Time Frequency Measurement; Atomic Energy Press: Beijing, China, 2002; p. 296. [Google Scholar]
- William, R.; David, H. Handbook of Frequency Stability Analysis. Available online: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50505 (accessed on 22 December 2023).
- Dai, Q.; Yi, Q.; Yi, J. Research on Pulse Distribution Technology of High Precision. GNSS World China 2011, 6, 28–31. [Google Scholar] [CrossRef]
- Zhao, H.; Lv, Y.; Mei, P. A Digital High Precision Pulses Generation Method. Electron. Packag. 2017, 17, 23–25. [Google Scholar] [CrossRef]
- Zhong, W.; Gong, D.; Gong, H. A phase compensation method for time-frequency signal. J. Time Freq. 2011, 34, 16–22. [Google Scholar]
- Zhang, Y.; Yan, J. Compensation Method of Pressure Sensor Base on Minimum Two Multiplication Principle. Comput. Meas. Control 2007, 12, 1870–1871, 1874. [Google Scholar] [CrossRef]
- Zhu, J.; Cao, X.; Niu, Y.; Xiao, Z. Investigation of Lactone Chiral Enantiomers and Their Contribution to the Aroma of Longjing Tea by Odor Activity Value and S-Curve. J. Agric. Food Chem. 2023, 71, 6691–6698. [Google Scholar] [CrossRef]
- Kujawski, D.; Vasudevan, A.K.; Plano, S.; Gabellone, D. A method to estimate fatigue limit using (1/Nf)-S curve. Int. J. Fatigue 2024, 182, 108205. [Google Scholar] [CrossRef]
- Zhan, X.; Su, X. GNSS Integrity Monitoring Theory and Assisted Performance Enhancement Technique; Science Press: Beijing, China, 2016; p. 46. [Google Scholar]
Parameter | Meaning |
---|---|
dataold | Historical measurement data |
∆T | Historical temperature change data |
data | Current measurement result |
fb | Frequency bias |
The STD of noise | |
pdarr | Sequence of historical forecast bias |
Threshold of RMSE | |
thrpd | Threshold of forecast bias |
Threshold of the mean of the forecast bias | |
Mean of the historical forecast bias | |
statematrix | Sequence of historical fault state |
thrfb | Threshold of frequency bias |
statefault | Fault Status at the current time |
stateIntegrity | Integrity status at the current time |
ftdata (Hour) | R | |||
---|---|---|---|---|
1 | 0.53 | 8.96 × 10−15 | 0.34 | 18.40 |
2 | 0.14 | 4.74 × 10−15 | 0.38 | 10.06 |
3 | 0.29 | 4.42 × 10−15 | 0.27 | 9.19 |
4 | 0.31 | 4.58 × 10−15 | 0.21 | 9.38 |
5 | 0.35 | 4.07 × 10−15 | 0.16 | 8.30 |
6 | 0.47 | 2.35 × 10−15 | 0.15 | 4.85 |
7 | 0.70 | 1.30 × 10−15 | 0.13 | 2.74 |
8 | 0.67 | 1.20 × 10−15 | 0.12 | 2.61 |
9 | 0.69 | 8.55 × 10−16 | 0.14 | 2.13 |
10 | 0.81 | 3.85 × 10−16 | 0.07 | 1.14 |
11 | 0.87 | 3.13 × 10−16 | 0.09 | 1.30 |
12 | 0.91 | 2.36 × 10−16 | 0.05 | 1.80 |
13 | 1.01 | 1.30 × 10−16 | 0.06 | 2.40 |
14 | 1.01 | 8.94 × 10−17 | 0.04 | 2.80 |
15 | 1.01 | 8.87 × 10−17 | 0.03 | 2.94 |
16 | 0.93 | 9.36 × 10−17 | 0.02 | 2.96 |
17 | 0.92 | 9.81 × 10−17 | 0.04 | 2.98 |
18 | 0.92 | 8.06 × 10−17 | 0.02 | 2.99 |
19 | 0.90 | 5.96 × 10−17 | 0.04 | 3.00 |
20 | 0.95 | 1.97 × 10−16 | 0.08 | 3.00 |
21 | 1.01 | 2.46 × 10−16 | 0.07 | 3.12 |
22 | 1.06 | 2.85 × 10−16 | 0.04 | 3.56 |
23 | 1.07 | 2.93 × 10−16 | 0.04 | 3.69 |
24 | 1.06 | 2.98 × 10−16 | 0.02 | 3.55 |
Parameters | Meanings | Values |
---|---|---|
ftdata | The fitting time of data | 10 h |
ATcon | The threshold of continuous fault alarm time | 5 s |
thrpd | Threshold of the forecast bias | 3.1 |
Tcp | Cumulative prediction time | 30 s |
Threshold of the mean of the forecast bias | 50 ps | |
Threshold for RMSE | 1.44 | |
thrfb | Threshold for frequency bias | 1.5 × 10−15 |
Type of Faults | TTA(s) | ||||
---|---|---|---|---|---|
td1 | td2 | td3 | td4 | td5 | |
Phase transition of 400 ps | 5 | 5 | 5 | 5 | 5 |
Phase transition of 200 ps | 8 | 7 | 5 | 5 | 5 |
Phase transition of 90 ps | 13 | 13 | 10 | 7 | 10 |
Noise deterioration at 90 ps | 14 | 13 | 19 | 7 | 7 |
Frequency transition of 2 × 10−15 | 7784 | 7666 | 7596 | 1846 | 7798 |
Type of Faults | TTA(s) | ||||
---|---|---|---|---|---|
td1 | td2 | td3 | td4 | td5 | |
Phase transition of 400 ps | 1463 | 1463 | 27788 | N/A | 10062 |
Phase transition of 200 ps | N/A | N/A | N/A | N/A | N/A |
Phase transition of 90 ps | N/A | N/A | N/A | N/A | N/A |
Noise deterioration at 90 ps | 12,314 | 83,798 | 26,135 | N/A | N/A |
Frequency transition of 2 × 10−15 | 89,666 | 107,408 | 135,189 | 182,726 | 160,450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Li, Z.; Gong, H.; Peng, J.; Ou, G. Time–Frequency Signal Integrity Monitoring Algorithm Based on Temperature Compensation Frequency Bias Combination Model. Remote Sens. 2024, 16, 1453. https://doi.org/10.3390/rs16081453
Guo Y, Li Z, Gong H, Peng J, Ou G. Time–Frequency Signal Integrity Monitoring Algorithm Based on Temperature Compensation Frequency Bias Combination Model. Remote Sensing. 2024; 16(8):1453. https://doi.org/10.3390/rs16081453
Chicago/Turabian StyleGuo, Yu, Zongnan Li, Hang Gong, Jing Peng, and Gang Ou. 2024. "Time–Frequency Signal Integrity Monitoring Algorithm Based on Temperature Compensation Frequency Bias Combination Model" Remote Sensing 16, no. 8: 1453. https://doi.org/10.3390/rs16081453
APA StyleGuo, Y., Li, Z., Gong, H., Peng, J., & Ou, G. (2024). Time–Frequency Signal Integrity Monitoring Algorithm Based on Temperature Compensation Frequency Bias Combination Model. Remote Sensing, 16(8), 1453. https://doi.org/10.3390/rs16081453