Effects of Ice-Microstructure-Based Inherent Optical Properties Parameterization in the CICE Model
Abstract
:1. Introduction
2. Method, Data, and Sea Ice Model
2.1. IOPs Parameterization
2.2. Atmospheric and Oceanic Forcing Data
2.3. Sea Ice Model
3. Results
3.1. Impacts on Inherent Optical Properties
3.2. Impacts on Shortwave Fluxes
3.3. Impacts on Sea Ice Simulation
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ebert, E.E.; Curry, J.A. An intermediate one-dimensional thermodynamic sea-ice model for investigating ice-atmosphere interactions. J. Geophys. Res. Ocean. 1993, 98, 10085–10109. [Google Scholar] [CrossRef]
- Perovich, D.K.; Light, B.; Eicken, H.; Jones, K.F.; Runciman, K.; Nghiem, S.V. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophys. Res. Lett. 2007, 34, 5. [Google Scholar] [CrossRef]
- Perovich, D.K.; Richter-Menge, J.A.; Jones, K.F.; Light, B. Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett. 2008, 35, 4. [Google Scholar] [CrossRef]
- Perovich, D.K.; Richter-Menge, J.A.; Jones, K.F.; Light, B.; Elder, B.C.; Polashenski, C.; Laroche, D.; Markus, T.; Lindsay, R. Arctic sea-ice melt in 2008 and the role of solar heating. Ann. Glaciol. 2011, 52, 355–359. [Google Scholar] [CrossRef]
- Holland, M.M.; Bitz, C.M.; Tremblay, B. Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett. 2006, 33, 5. [Google Scholar] [CrossRef]
- Hudson, S.R. Estimating the global radiative impact of the sea ice-albedo feedback in the Arctic. J. Geophys. Res. Atmos 2011, 116, 7. [Google Scholar] [CrossRef]
- Dai, A.G.; Luo, D.H.; Song, M.R.; Liu, J.P. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 2019, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Perovich, D.K.; Polashenski, C. Albedo evolution of seasonal Arctic sea ice. Geophys. Res. Lett. 2012, 39, 6. [Google Scholar] [CrossRef]
- Liu, J.P.; Song, M.R.; Horton, R.M.; Hu, Y. Revisiting the potential of melt pond fraction as a predictor for the seasonal Arctic sea ice extent minimum. Environ. Res. Lett. 2015, 10, 054017. [Google Scholar] [CrossRef]
- Ding, Y.F.; Cheng, X.; Liu, J.P.; Hui, F.M.; Wang, Z.Z.; Chen, S.Z. Retrieval of Melt Pond Fraction over Arctic Sea Ice during 2000–2019 Using an Ensemble-Based Deep Neural Network. Remote Sens. 2020, 12, 2746. [Google Scholar] [CrossRef]
- Huang, W.F.; Lei, R.B.; Han, H.W.; Li, Z.J. Physical structures and interior melt of the central Arctic sea ice/snow in summer 2012. Cold Reg. Sci. Technol. 2016, 124, 127–137. [Google Scholar] [CrossRef]
- Maykut, G.A.; Perovich, D.K. The role of shortwave radiation in the summer decay of a sea ice cover. J. Geophys. Res. Ocean. 1987, 92, 7032–7044. [Google Scholar] [CrossRef]
- Arrigo, K.R.; van Dijken, G.L.; Bushinsky, S. Primary production in the Southern Ocean, 1997–2006. J. Geophys. Res. Ocean. 2008, 113, 27. [Google Scholar] [CrossRef]
- Mundy, C.J.; Gosselin, M.; Ehn, J.; Gratton, Y.; Rossnagel, A.; Barber, D.G.; Martin, J.; Tremblay, J.; Palmer, M.; Arrigo, K.R.; et al. Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys. Res. Lett. 2009, 36, 5. [Google Scholar] [CrossRef]
- Arrigo, K.R. Sea Ice Ecosystems. In Annual Review of Marine Science; Carlson, C.A., Giovannoni, S.J., Eds.; Annual Reviews: Palo Alto, CA, USA, 2014; Volume 6, pp. 439–467. [Google Scholar]
- Perovich, D.K. Complex yet translucent: The optical properties of sea ice. Phys. B Condens. Matter 2003, 338, 107–114. [Google Scholar] [CrossRef]
- Grenfell, T.C. A Theoretical Model of the Optical Properties of Sea Ice in the Visible and Near Infrared. J. Geophys. Res. Ocean. 1983, 88, 9723–9735. [Google Scholar] [CrossRef]
- Light, B.; Maykut, G.A.; Grenfell, T.C. A temperature-dependent, structural-optical model of first-year sea ice. J. Geophys. Res. Ocean. 2004, 109, 19. [Google Scholar] [CrossRef]
- Yu, M.; Lu, P.; Cheng, B.; Leppaeranta, M.; Li, Z.J. Impact of Microstructure on Solar Radiation Transfer Within Sea Ice During Summer in the Arctic: A Model Sensitivity Study. Front. Mar. Sci. 2022, 9, 861994. [Google Scholar] [CrossRef]
- Shokr, M.; Agnew, T.A. Validation and potential applications of Environment Canada Ice Concentration Extractor (ECICE) algorithm to Arctic ice by combining AMSR-E and QuikSCAT observations. Remote Sens. Environ. 2013, 128, 315–332. [Google Scholar] [CrossRef]
- Sandven, S.; Spreen, G.; Heygster, G.; Girard-Ardhuin, F.; Farrell, S.L.; Dierking, W.; Allard, R.A. Sea Ice Remote Sensing-Recent Developments in Methods and Climate Data Sets. Surv. Geophys. 2023, 44, 1653–1689. [Google Scholar] [CrossRef]
- Fan, Y.F.; Li, L.L.; Chen, H.H.; Guan, L. Evaluation and Application of SMRT Model for L-Band Brightness Temperature Simulation in Arctic Sea Ice. Remote Sens. 2023, 15, 3889. [Google Scholar] [CrossRef]
- Collins, W.D.; Bitz, C.M.; Blackmon, M.L.; Bonan, G.B.; Bretherton, C.S.; Carton, J.A.; Chang, P.; Doney, S.C.; Hack, J.J.; Henderson, T.B.; et al. The Community Climate System Model version 3 (CCSM3). J. Clim. 2006, 19, 2122–2143. [Google Scholar] [CrossRef]
- Briegleb, P.; Light, B. A Delta-Eddington Mutiple Scattering Parameterization for Solar Radiation in the Sea Ice Component of the Community Climate System Model; NCAR Technical Note NCAR/TN-472+STR; NCAR: Boulder, CO, USA, 2007. [Google Scholar] [CrossRef]
- Perovich, D.; Light, B.; Dickinson, S. Changing ice and changing light: Trends in solar heat input to the upper Arctic ocean from 1988 to 2014. Ann. Glaciol. 2020, 61, 401–407. [Google Scholar] [CrossRef]
- Grenfell, T.C. A radiative-transfer model for sea ice with vertical structure variations. J. Geophys. Res. Ocean. 1991, 96, 16991–17001. [Google Scholar] [CrossRef]
- Warren, S.G.; Brandt, R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Light, B.; Maykut, G.A.; Grenfell, T.C. Effects of temperature on the microstructure of first-year Arctic sea ice. J. Geophys. Res. Ocean. 2003, 108, 3051. [Google Scholar] [CrossRef]
- Ehn, J.K.; Papakyriakou, T.N.; Barber, D.G. Inference of optical properties from radiation profiles within melting landfast sea ice. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Zuo, H.; Balmaseda, M.A.; Tietsche, S.; Mogensen, K.; Mayer, M. The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci. 2019, 15, 779–808. [Google Scholar] [CrossRef]
- Craig, T.; Hunke, E.; Duvivier, A. CICE-Consortium/CICE: CICE Version 6.0.0. 2018. Available online: https://zenodo.org/records/1893041 (accessed on 1 January 2020).
- Light, B.; Eicken, H.; Maykut, G.A.; Grenfell, T.C. The effect of included particulates on the spectral albedo of sea ice. J. Geophys. Res. Ocean. 1998, 103, 27739–27752. [Google Scholar] [CrossRef]
- Notz, D.; Jahn, A.; Holland, M.; Hunke, E.; Massonnet, F.; Stroeve, J.; Tremblay, B.; Vancoppenolle, M. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding sea ice through climate-model simulations. Geosci. Model Dev. 2016, 9, 3427–3446. [Google Scholar] [CrossRef]
- Singh, H.K.A.; Landrum, L.; Holland, M.M.; Bailey, D.A.; DuVivier, A.K. An Overview of Antarctic Sea Ice in the Community Earth System Model Version 2, Part I: Analysis of the Seasonal Cycle in the Context of Sea Ice Thermodynamics and Coupled Atmosphere-Ocean-Ice Processes. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002143. [Google Scholar] [CrossRef]
- Yu, M.; Lu, P.; Leppäranta, M.; Cheng, B.; Lei, R.B.; Li, B.R.; Wang, Q.K.; Li, Z.J. Modeled variations in the inherent optical properties of summer Arctic ice and their effects on the radiation budget: A case based on ice cores from 2008 to 2016. Cryosphere 2024, 18, 273–288. [Google Scholar] [CrossRef]
IOPs\Band | 200–700 nm | 700–1190 nm | 1190–5000 nm |
---|---|---|---|
20.2 | 27.7 | 1445 | |
0.9901 | 0.7223 | 0.0277 | |
0.94 | 0.94 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, J. Effects of Ice-Microstructure-Based Inherent Optical Properties Parameterization in the CICE Model. Remote Sens. 2024, 16, 1494. https://doi.org/10.3390/rs16091494
Zhang Y, Liu J. Effects of Ice-Microstructure-Based Inherent Optical Properties Parameterization in the CICE Model. Remote Sensing. 2024; 16(9):1494. https://doi.org/10.3390/rs16091494
Chicago/Turabian StyleZhang, Yiming, and Jiping Liu. 2024. "Effects of Ice-Microstructure-Based Inherent Optical Properties Parameterization in the CICE Model" Remote Sensing 16, no. 9: 1494. https://doi.org/10.3390/rs16091494
APA StyleZhang, Y., & Liu, J. (2024). Effects of Ice-Microstructure-Based Inherent Optical Properties Parameterization in the CICE Model. Remote Sensing, 16(9), 1494. https://doi.org/10.3390/rs16091494