A Multi-Level Robust Positioning Method for Three-Dimensional Ground Penetrating Radar (3D GPR) Road Underground Imaging in Dense Urban Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aboveground and Underground Integrated 3D Mobile Survey System
2.2. Multilevel Positioning Framework
2.2.1. GNSS Differential Positioning with Good GNSS Signals
2.2.2. GNSS/INS Tightly Coupled Positioning with Weak GNSS Signals
2.2.3. Laser SLAM Positioning with No GNSS Signal
- Point cloud adjacency frame matching
Algorithm 1: Double-threshold ground filtering algorithm |
Input: k moment point cloud Output: non-ground points NG //Minimum distance ; Max distance ; Height threshold While (∈) do While (∈Mi) do for (∈) do if and if |
- 2.
- Point cloud motion estimation
3. Results
3.1. Experiment Area and Data
3.1.1. Experiment with Good GNSS Signals
3.1.2. Experiment with Weak GNSS Signals
3.2. Positioning Results and Accuracy Analysis
3.2.1. Experiment with Good GNSS Signals
- Trajectory results
- 2.
- Positioning accuracy evaluation
3.2.2. Experiment with Weak GNSS Signals
- Trajectory results
- 2.
- Positioning accuracy evaluation
3.3. 3D GPR Imaging Results
3.3.1. Experiment with Good GNSS Signals
3.3.2. Experiment with Weak GNSS Signals
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grasmueck, M.; Weger, R.; Horstmeyer, H. Full-resolution 3D GPR imaging. Geophysics 2005, 70, K12–K19. [Google Scholar] [CrossRef]
- Novo, A.; Lorenzo, H.; Rial, F.I.; Solla, M. 3D GPR in forensics: Finding a clandestine grave in a mountainous environment. Forensic Sci. Int. 2011, 204, 134–138. [Google Scholar] [CrossRef]
- Kelly, T.; Angel, M.; O’Connor, D.; Huff, C.; Morris, L.; Wach, G. A novel approach to 3D modelling ground-penetrating radar (GPR) data–A case study of a cemetery and applications for criminal investigation. Forensic Sci. Int. 2021, 325, 110882. [Google Scholar] [CrossRef]
- Sato, M.; Yokota, Y.; Takahashi, K.; Grasmueck, M. Landmine detection by 3D GPR system. In Proceedings of the Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVII, Baltimore, MD, USA, 23–27 April 2012; Volume 8357, p. 835710. [Google Scholar]
- Klesk, P.; Kapruziak, M.; Olech, B. Statistical moments calculated via integral images in application to landmine detection from Ground Penetrating Radar 3D scans. Pattern Anal. Appl. 2018, 21, 671–684. [Google Scholar] [CrossRef]
- Ebrahim, S.M.; Medhat, N.; Mansour, K.K.; Gaber, A. Examination of soil effect upon GPR detectability of landmine with different orientations. NRIAG J. Astron. Geophys. 2018, 7, 90–98. [Google Scholar] [CrossRef]
- Lee, S.-H.; Jang, I.-H. A Sudy on the Underground Condition of Road Using 3D-GPR Exploration. J. Korean Geoenviron. Soc. 2019, 20, 49–58. [Google Scholar]
- Kang, M.-S.; Kim, N.; Im, S.B.; Lee, J.-J.; An, Y.-K. 3D GPR image-based UcNet for enhancing underground cavity detectability. Remote Sens. 2019, 11, 2545. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, W.; Gu, X.; Li, S.; Wang, L.; Zhang, T. Application of Combining YOLO Models and 3D GPR Images in Road Detection and Maintenance. Remote Sens. 2021, 13, 1081. [Google Scholar] [CrossRef]
- Emilsson, J.; Viberg, A.; Gustafsson, J.; Langton, M.; Friborg, J. Efficient State-of-Art HDR 3D GPR Compared to 2D Traditional Utility Investigations. In Proceedings of the NSG2020 26th European Meeting of Environmental and Engineering Geophysics; European Association of Geoscientists & Engineers, Online, 7–8 December 2020; Volume 2020, pp. 1–4. [Google Scholar]
- Feng, J.; Yang, L.; Wang, H.; Song, Y.; Xiao, J. Gpr-based subsurface object detection and reconstruction using random motion and depthnet. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 7035–7041. [Google Scholar]
- Luo, G.; Cao, Y.; Xu, H.; Yang, G.; Wang, S.; Huang, Y.; Bai, Z. Research on typical soil physical properties in a mining area: Feasibility of three-dimensional ground penetrating radar detection. Environ. Earth Sci. 2021, 80, 92. [Google Scholar] [CrossRef]
- Zajc, M.; Urbanc, J.; Pečan, U.; Glavan, M.; Pintar, M. Using 3D GPR for determining soil conditions in precision agriculture. In Proceedings of the 18th International Conference on Ground Penetrating Radar; Society of Exploration Geophysicists, Golden, CO, USA, 14–19 June 2020; pp. 291–294. [Google Scholar]
- Ercoli, M.; Di Matteo, L.; Pauselli, C.; Mancinelli, P.; Frapiccini, S.; Talegalli, L.; Cannata, A. Integrated GPR and laboratory water content measures of sandy soils: From laboratory to field scale. Constr. Build. Mater. 2018, 159, 734–744. [Google Scholar] [CrossRef]
- Gaballah, M.; Grasmueck, M.; Sato, M. Characterizing subsurface archaeological structures with full resolution 3D GPR at the early dynastic foundations of Saqqara Necropolis, Egypt. Sens. Imaging 2018, 19, 23. [Google Scholar] [CrossRef]
- Ozkan-Okay, M.; Kadioglu, S.; Samet, R. Enhancement of 2D/3D GPR Data Imaging by the Proposed TAEF Technique: Displaying Archeological Remains under the Colonnade Road in Anavarza Ancient City, Adana, Turkey. In Proceedings of the Geoinformatics, European Association of Geoscientists & Engineers, Online, 11–14 May 2021; Volume 2021, pp. 1–7. [Google Scholar]
- Pipan, M.; Baradello, L.; Forte, E.; Prizzon, A.; Finetti, I. 2-D and 3-D processing and interpretation of multi-fold ground penetrating radar data: A case history from an archaeological site. J. Appl. Geophys. 1999, 41, 271–292. [Google Scholar] [CrossRef]
- McMechan, G.A.; Gaynor, G.C.; Szerbiak, R.B. Use of ground-penetrating radar for 3-D sedimentological characterization of clastic reservoir analogs. Geophysics 1997, 62, 786–796. [Google Scholar] [CrossRef]
- Grasmueck, M. 3-D ground-penetrating radar applied to fracture imaging in gneiss. Geophysics 1996, 61, 1050–1064. [Google Scholar] [CrossRef]
- Šarlah, N.; Podobnikar, T.; Ambrožič, T.; Mušič, B. Application of Kinematic GPR-TPS model with high 3D georeference accuracy for underground utility infrastructure mapping: A case study from urban sites in Celje, Slovenia. Remote Sens. 2020, 12, 1228. [Google Scholar] [CrossRef]
- Boniger, U.; Tronicke, J. On the potential of kinematic GPR surveying using a self-tracking total station: Evaluating system crosstalk and latency. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3792–3798. [Google Scholar] [CrossRef]
- Trinks, I.; Johansson, B.; Gustafsson, J.; Emilsson, J.; Friborg, J.; Gustafsson, C.; Nissen, J.; Hinterleitner, A. Efficient, large-scale archaeological prospection using a true three-dimensional ground-penetrating radar array system. Archaeol. Prospect. 2010, 17, 175–186. [Google Scholar] [CrossRef]
- Sukhanov, D.Y.; Ponomarev, O.; Zavyalova, K.; Khmelev, V.; Roslyakov, S. Radar with a local positioning video-system. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Spring (PIERS), St. Petersburg, Russia, 22–25 May 2017; pp. 3723–3728. [Google Scholar]
- Kaniewski, P.; Kraszewski, T.; Pasek, P. UWB-Based Positioning System for Supporting Lightweight Handheld Ground-Penetrating Radar. In Proceedings of the 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, 4–6 November 2019; pp. 1–4. [Google Scholar]
- Ciampoli, L.B.; Calvi, A.; Di Benedetto, A.; Fiani, M.; Gagliardi, V. Ground Penetrating Radar (GPR) and Mobile Laser Scanner (MLS) technologies for non-destructive analysis of transport infrastructures. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications XII, Online, 13–18 September 2021; Volume 11863, pp. 166–174. [Google Scholar]
- Merkle, D.; Frey, C.; Reiterer, A. Fusion of ground penetrating radar and laser scanning for infrastructure mapping. J. Appl. Geod. 2021, 15, 31–45. [Google Scholar] [CrossRef]
- Grasmueck, M.; Viggiano, D.A. Integration of ground-penetrating radar and laser position sensors for real-time 3-D data fusion. IEEE Trans. Geosci. Remote Sens. 2006, 45, 130–137. [Google Scholar] [CrossRef]
- Hui, C.K.; Luo, T.X.; Lai, W.W.; Chang, R.K. GPR mapping with mobile mapping sensing and tracking technologies. Tunn. Undergr. Space Technol. 2022, 122, 104362. [Google Scholar] [CrossRef]
- Hjartarson, K. Dynamic Path Planning, Mapping, and Navigation for Autonomous GPR Survey Robots. Master’s Thesis, Umeå University, Umeå, Sweden, 2023. [Google Scholar]
- Ogunniyi, S.; Withey, D.; Marais, S.; Crafford, G. LiDAR-based 3D mapping and localisation system for ground penetrating radar. In Proceedings of the 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa, 29–31 January 2020; pp. 1–6. [Google Scholar]
- Wang, X.; Li, X.; Liao, J. Tightly-coupled stereo visual-inertial-LiDAR SLAM based on graph optimization. Acta Geod. Cartogr. Sin. 2022, 51, 1744. [Google Scholar]
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Rus, D. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2021. [Google Scholar]
- Zhao, S.; Zhang, H.; Wang, P.; Nogueira, L.; Scherer, S. Super Odometry: IMU-centric LiDAR-Visual-Inertial Estimator for Challenging Environments. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021. [Google Scholar]
Methodology | Direction | MIN (m) | MAX (m) | AVE (m) | S.D. | RMSE (m) |
---|---|---|---|---|---|---|
GNSS | E | 0.007 | 0.222 | 0.067 | 0.077 | 0.099 |
N | 0.003 | 0.107 | 0.036 | 0.037 | 0.050 | |
GNSS/IMU | E | 0.001 | 0.043 | 0.014 | 0.012 | 0.018 |
N | 0.000 | 0.066 | 0.014 | 0.018 | 0.022 | |
SLAM | E | 0.001 | 0.112 | 0.054 | 0.038 | 0.057 |
N | 0.000 | 0.087 | 0.032 | 0.028 | 0.037 |
Methodology | Direction | MIN (m) | MAX (m) | AVE (m) | S.D. | RMSE (m) |
---|---|---|---|---|---|---|
GNSS | E | 0.033 | 20.531 | 2.325 | 6.400 | 6.502 |
N | 0.013 | 3.530 | 0.710 | 1.041 | 1.216 | |
GNSS/IMU | E | 0.002 | 0.282 | 0.059 | 0.086 | 0.101 |
N | 0.000 | 0.218 | 0.075 | 0.078 | 0.105 | |
SLAM | E | 0.004 | 0.104 | 0.071 | 0.036 | 0.079 |
N | 0.002 | 0.130 | 0.089 | 0.037 | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Hu, Q.; Zhou, Y.; Zhao, P.; Duan, X. A Multi-Level Robust Positioning Method for Three-Dimensional Ground Penetrating Radar (3D GPR) Road Underground Imaging in Dense Urban Areas. Remote Sens. 2024, 16, 1559. https://doi.org/10.3390/rs16091559
Zhang J, Hu Q, Zhou Y, Zhao P, Duan X. A Multi-Level Robust Positioning Method for Three-Dimensional Ground Penetrating Radar (3D GPR) Road Underground Imaging in Dense Urban Areas. Remote Sensing. 2024; 16(9):1559. https://doi.org/10.3390/rs16091559
Chicago/Turabian StyleZhang, Ju, Qingwu Hu, Yemei Zhou, Pengcheng Zhao, and Xuzhe Duan. 2024. "A Multi-Level Robust Positioning Method for Three-Dimensional Ground Penetrating Radar (3D GPR) Road Underground Imaging in Dense Urban Areas" Remote Sensing 16, no. 9: 1559. https://doi.org/10.3390/rs16091559
APA StyleZhang, J., Hu, Q., Zhou, Y., Zhao, P., & Duan, X. (2024). A Multi-Level Robust Positioning Method for Three-Dimensional Ground Penetrating Radar (3D GPR) Road Underground Imaging in Dense Urban Areas. Remote Sensing, 16(9), 1559. https://doi.org/10.3390/rs16091559