Effect of Incidence Angle on Temperature Measurement of Solar Panel with Unmanned Aerial Vehicle-Based Thermal Infrared Camera
Abstract
:1. Introduction
1.1. Background
1.2. Prior Research
1.3. Need for Research
2. Materials and Methods
2.1. Study Equipment
2.2. Study Area
2.3. Data Acquisition and Processing
2.3.1. Temperature Data Acquisition
2.3.2. GPS Data Acquisition
2.4. Incidence Angle Data Acquisition
2.5. Multiple Regression Analysis
3. Results
3.1. TIR-Measured Temperature Results
3.2. Multiple Regression Analysis Results
4. Discussion
4.1. TIR Measured Temperature Discussion
4.2. Multiple Regression Analysis Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA. Renewable Energy Market Update: Outlook for 2021 and 2022. Available online: https://iea.blob.core.windows.net/assets/18a6041d-bf13-4667-a4c2-8fc008974008/RenewableEnergyMarketUpdate-Outlookfor2021and2022.pdf (accessed on 12 December 2023).
- Makrides, G.; Zinsser, B.; Schubert, M.; Georghiou, G.E. Performance loss rate of twelve photovoltaic technologies under field conditions using statistical techniques. Sol. Energy 2014, 103, 28–42. [Google Scholar] [CrossRef]
- Kim, J.; Rabelo, M.; Padi, S.P.; Yousuf, H.; Cho, E.C.; Yi, J. A Review of the Degradation of Photovoltaic Modules for Life Expectancy. Energies 2021, 14, 4278. [Google Scholar] [CrossRef]
- Rahaman, S.A.; Urmee, T.; Parlevliet, D.A. PV system defects identification using Remotely Piloted Aircraft (RPA) based infrared (IR) imaging: A review. Sol. Energy 2020, 206, 579–595. [Google Scholar] [CrossRef]
- Dalsass, M.; Scheuerpflug, H.; Maier, M.; Brabec, C.J. Correlation between the monitoring data of a photovoltaic power plant and module defects detected by drone-mounted thermography. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 14–18 September 2015; pp. 14–18. [Google Scholar]
- Köntges, M.; Kurtz, S.; Packard, C.E.; Jahn, U.; Berger, K.A.; Kato, K.; Friesen, T.; Liu, H.; Van Iseghem, M.; Wohlgemuth, J.; et al. Review of Failures of Photovoltaic Modules; IEA International Energy Agency: Paris, France, 2014. [Google Scholar]
- Dunlop, E.D.; Halton, D.; Ossenbrink, H.A. 20 years of life and more: Where is the end of life of a PV module? In Proceedings of the Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, 2005, Lake Buena Vista, FL, USA, 3–7 January 2005; pp. 1593–1596. [Google Scholar]
- Buerhop, C.; Schlegel, D.; Niess, M.; Vodermayer, C.; Weißmann, R.; Brabec, C.J. Reliability of IR-imaging of PV-plants under operating conditions. Sol. Energy Mater. Sol. Cells 2012, 107, 154–164. [Google Scholar] [CrossRef]
- Käsewieter, J.; Haase, F.; Larrodé, M.H.; Köntges, M. Cracks in solar cell metallization leading to module power loss under mechanical loads. Energy Procedia 2014, 55, 469–477. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared thermography for temperature measurement and non-destructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [PubMed]
- Salazar, A.M.; Macabebe, E.Q.B. Hotspots detection in photovoltaic modules using infrared thermography. In Proceedings of the MATEC Web of Conferences, Les Ulis, France, 25–27 May 2016; p. 10015. [Google Scholar]
- Acciani, G.; Simione, G.B.; Vergura, S. Thermographic analysis of photovoltaic panels. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’10), Granada, Spain, 23–25 March 2010; pp. 23–25. [Google Scholar]
- Muntwyler, U.; Schuepbach, E.; Lanz, M. Infrared (IR) drone for quick and cheap PV inspection. In Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 14–18 September 2015; pp. 1804–1806. [Google Scholar]
- Gallardo-Saavedra, S.; Hernández-Callejo, L.; Duque-Perez, O. Technological review of the instrumentation used in aerial thermographic inspection of photovoltaic plants. Renew. Sustain. Energy Rev. 2018, 93, 566–579. [Google Scholar] [CrossRef]
- Kim, D.; Youn, J.; Kim, C. Automatic photovoltaic panel area extraction from UAV thermal infrared images. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2016, 34, 559–568. [Google Scholar] [CrossRef]
- Zefri, Y.; ElKettani, A.; Sebari, I.; Ait Lamallam, S. Thermal infrared and visual inspection of photovoltaic installations by UAV photogrammetry—Application case: Morocco. Drones 2018, 2, 41. [Google Scholar] [CrossRef]
- de Oliveira, A.K.V.; Aghaei, M.; Rüther, R. Aerial infrared thermography for low-cost and fast fault detection in utility-scale PV power plants. Sol. Energy 2020, 211, 712–724. [Google Scholar] [CrossRef]
- Álvarez-Tey, G.; Jiménez-Castañeda, R.; Carpio, J. Analysis of the configuration and the location of thermographic equipment for the inspection in photovoltaic systems. Infrared Phys. Technol. 2017, 87, 40–46. [Google Scholar] [CrossRef]
- Moretón, R.; Lorenzo, E.; Narvarte, L. Experimental observations on hot-spots and derived acceptance/rejection criteria. Sol. Energy 2015, 118, 28–40. [Google Scholar] [CrossRef]
- Moretón, R.; Lorenzo, E.; Leloux, J.; Carrillo, J.M. Dealing in practice with hot-spots. In Proceedings of the 29st European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 22–26 September 2014; pp. 1–6. [Google Scholar]
- Tsanakas, J.A.; Ha, L.; Buerhop, C. Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges. Renew. Sustain. Energy Rev. 2016, 62, 695–709. [Google Scholar] [CrossRef]
- Tanda, G.; Migliazzi, M. Infrared thermography monitoring of solar photovoltaic systems: A comparison between UAV and aircraft remote sensing platforms. Therm. Sci. Eng. Prog. 2024, 48, 102379. [Google Scholar] [CrossRef]
- Kandeal, A.W.; Elkadeem, M.R.; Thakur, A.K.; Abdelaziz, G.B.; Sathyamurthy, R.; Kabeel, A.E.; Yang, N.; Sharshir, S.W. Infrared thermography-based condition monitoring of solar photovoltaic systems: A mini review of recent advances. Sol. Energy 2021, 223, 33–43. [Google Scholar] [CrossRef]
- Buerhop, C.; Pickel, T.; Dalsass, M.; Scheuerpflug, H.; Camus, C.; Brabec, C.J. aIR-PV-check: A quality inspection of PV-power plants without operation interruption. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 1677–1681. [Google Scholar]
- Aghaei, M.; Leva, S.; Grimaccia, F. PV power plant inspection by image mosaicing techniques for IR real-time images. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 3100–3105. [Google Scholar]
- Leva, S.; Aghaei, M.; Grimaccia, F. PV power plant inspection by UAS: Correlation between altitude and detection of defects on PV modules. In Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, 10–13 June 2015; pp. 1921–1926. [Google Scholar]
- Quater, P.B.; Grimaccia, F.; Leva, S.; Mussetta, M.; Aghaei, M. Light Unmanned Aerial Vehicles (UAVs) for cooperative inspection of PV plants. IEEE J. Photovolt. 2014, 4, 1107–1113. [Google Scholar] [CrossRef]
- Rahaman, S.A.; Urmee, T.; Parlevliet, D.A. Investigate the impact of environmental and operating conditions of infrared (IR) imaging on infrared thermography of PV modules to identify defects. Sol. Energy 2022, 245, 231–253. [Google Scholar] [CrossRef]
- Lagouarde, J.; Hénon, A.; Kurz, B.; Moreau, P.; Irvine, M.; Voogt, J.; Mestayer, P. Modelling Daytime Thermal Infrared Directional Anisotropy over Toulouse City Centre. Remote Sens. Environ. 2010, 114, 87–105. [Google Scholar] [CrossRef]
- Lagouarde, J.; Dayau, S.; Moreau, P.; Guyon, D. Directional Anisotropy of Brightness Surface Temperature over Vineyards: Case Study over the Medoc Region (SW France). IEEE Geosci. Remote Sens. Lett. 2013, 11, 574–578. [Google Scholar] [CrossRef]
- Bian, Z.; Roujean, J.; Lagouarde, J.; Cao, B.; Li, H.; Du, Y.; Liu, Q.; Xiao, Q.; Liu, Q. A Semi-Empirical Approach for Modeling the Vegetation Thermal Infrared Directional Anisotropy of Canopies Based on using Vegetation Indices. ISPRS J. Photogramm. Remote Sens. 2020, 160, 136–148. [Google Scholar] [CrossRef]
- Bian, Z.; Roujean, J.; Cao, B.; Du, Y.; Li, H.; Gamet, P.; Fang, J.; Xiao, Q.; Liu, Q. Modeling the Directional Anisotropy of Fine-Scale TIR Emissions over Tree and Crop Canopies Based on UAV Measurements. Remote Sens. Environ. 2021, 252, 112150. [Google Scholar] [CrossRef]
- Kimes, D.S.; Kirchner, J.A. Directional Radiometric Measurements of Row-Crop Temperatures. Int. J. Remote Sens. 1983, 4, 299–311. [Google Scholar] [CrossRef]
- Hu, L.; Monaghan, A.; Voogt, J.A.; Barlage, M. A First Satellite-Based Observational Assessment of Urban Thermal Anisotropy. Remote Sens. Environ. 2016, 181, 111–121. [Google Scholar] [CrossRef]
- Trigo, I.F.; Monteiro, I.T.; Olesen, F.; Kabsch, E. An Assessment of Remotely Sensed Land Surface Temperature. J. Geophys. Res. Atmos. 2008, 113, D17108. [Google Scholar] [CrossRef]
- DJI Science and Technology Co., Ltd. Zenmuse_H20_Series_User_Manual-EN v1.0, 05, Shenzhen, China. 2020. Available online: https://dl.djicdn.com/downloads/Zenmuse_H20_Series/Zenmuse_H20_Series_User_Manual-EN.pdf (accessed on 6 December 2023).
- Benetech products Co., Ltd. Benetech_GM320-EN-01, 06, Shenzhen, China. 2015. Available online: https://supermagneter.no/pub/media/downloads/manuals/Benetech_GM320.pdf (accessed on 6 December 2023).
- Lee, K.; Lee, W.H. Temperature Accuracy Analysis by Land Cover According to the Angle of the Thermal Infrared Imaging Camera for Unmanned Aerial Vehicles. ISPRS Int. J. Geo-Inf. 2022, 11, 204. [Google Scholar] [CrossRef]
- Elsobeiey, M.E. Accuracy assessment of satellite-based correction service and virtual GNSS reference station for hydrographic surveying. J. Mar. Sci. Eng. 2020, 8, 542. [Google Scholar] [CrossRef]
UAV | Thermal Infrared Camera | Laser Thermometer | |||
---|---|---|---|---|---|
Weight | 6300 g | Resolution | 640 × 512 | Temperature range | −50–380 °C (−58–716 °F) |
Flight altitude | Max: 5000 m | Pixel size | 12 μm | Accuracy | 1.5% or 1.5 °C |
Flight time | Max: 55 min | DFOV | 40.6° | Resolution | 0.1 °C |
Speed | Max: 23 m/s | Focal length | 13.5 mm | Wavelength | 8–14 μm |
Maximum wind resistance | 15 m/s | Scene range | −40–150° (High gain) −40–550° (Low gain) | Emissivity | 0.95 |
Number | Hotspot Area Temperature | Normal Module Temperature |
---|---|---|
1 | 46.46 °C | 34.54 °C |
2 | 44.2 °C | 35.61 °C |
3 | 48.4 °C | 35.41 °C |
4 | 52.78 °C | 35.5 °C |
5 | 53.76 °C | 36.44 °C |
6 | 47.66 °C | 36.27 °C |
Position of UAV | Number 1 Temperature | Number 2 Temperature | Number 3 Temperature | Number 4 Temperature | Number 5 Temperature | Number 6 Temperature |
---|---|---|---|---|---|---|
a1 | 56.79 °C | 53.94 °C | 59.87 °C | 62.86 °C | 63.31 °C | 60.84 °C |
a2 | 58.86 °C | 55.66 °C | 60.08 °C | 64.06 °C | 65.94 °C | 62.58 °C |
a3 | 56.91 °C | 53.64 °C | 60.98 °C | 63.28 °C | 64.06 °C | 59.36 °C |
a4 | 54.58 °C | 52.07 °C | 59.39 °C | 61.34 °C | 61.97 °C | 62.5 °C |
a5 | 52.98 °C | 51.5 °C | 57.28 °C | 59.4 °C | 59.45 °C | 57.43 °C |
a6 | 50.71 °C | 49.57 °C | 54.66 °C | 56.50 °C | 56.84 °C | 50.19 °C |
b1 | 57.63 °C | 53.89 °C | 58.18 °C | 63.68 °C | 63.92 °C | 56.04 °C |
b2 | 58.52 °C | 54.85 °C | 61.04 °C | 63.63 °C | 63.78 °C | 56.33 °C |
b3 | 56.93 °C | 49.60 °C | 59.03 °C | 63.38 °C | 64.26 °C | 58.99 °C |
b4 | 55.54 °C | 52.41 °C | 59.64 °C | 61.83 °C | 62.92 °C | 63.06 °C |
b5 | 54.17 °C | 51.65 °C | 57.19 °C | 59.91 °C | 60.04 °C | 57.17 °C |
b6 | 52.13 °C | 48.98 °C | 53.30 °C | 56.72 °C | 57.71 °C | 53.29 °C |
c1 | 56.58 °C | 53.91 °C | 57.27 °C | 63.77 °C | 64.64 °C | 58.82 °C |
c2 | 58.73 °C | 55.65 °C | 60.66 °C | 64.32 °C | 65.29 °C | 57.54 °C |
c3 | 56.82 °C | 59.56 °C | 53.50 °C | 63.81 °C | 62.78 °C | 64.16 °C |
c4 | 57.18 °C | 54.35 °C | 60.79 °C | 63.78 °C | 65.54 °C | 60.38 °C |
c5 | 52.93 °C | 50.97 °C | 55.45 °C | 59.29 °C | 60.69 °C | 58.92 °C |
c6 | 49.23 °C | 48.16 °C | 51.66 °C | 53.41 °C | 54.29 °C | 49.74 °C |
Position of UAV | Ambient Temperature Value of Number 1 | Ambient Temperature Value of Number 2 | Ambient Temperature Value of Number 3 | Ambient Temperature Value of Number 4 | Ambient Temperature Value of Number 5 | Ambient Temperature Value of Number 6 |
---|---|---|---|---|---|---|
a1 | 43.21 °C | 44.16 °C | 44.13 °C | 44.45 °C | 44.41 °C | 44.55 °C |
a2 | 44.95 °C | 45.86 °C | 45.74 °C | 46.03 °C | 46.16 °C | 46.65 °C |
a3 | 43.98 °C | 45.62 °C | 45.25 °C | 44.93 °C | 45.02 °C | 44.67 °C |
a4 | 43.99 °C | 45.49 °C | 46.19 °C | 45.27 °C | 44.92 °C | 45.43 °C |
a5 | 41.84 °C | 43.94 °C | 44.29 °C | 42.33 °C | 43.09 °C | 42.11 °C |
a6 | 40.83 °C | 42.24 °C | 42.29 °C | 41.03 °C | 40.33 °C | 40.06 °C |
b1 | 43.81 °C | 44.55 °C | 44.7 °C | 44.73 °C | 44.47 °C | 44.45 °C |
b2 | 44.97 °C | 45.57 °C | 45.3 °C | 45.48 °C | 45.13 °C | 45.33 °C |
b3 | 43.86 °C | 45.01 °C | 44.7 °C | 44.16 °C | 43.96 °C | 44 °C |
b4 | 44.2 °C | 45.87 °C | 46.07 °C | 45.6 °C | 46.49 °C | 45.68 °C |
b5 | 41.71 °C | 43.04 °C | 43.09 °C | 42.58 °C | 41.86 °C | 42.13 °C |
b6 | 42.15 °C | 42.57 °C | 42.67 °C | 41.68 °C | 41.12 °C | 40.55 °C |
c1 | 43.91 °C | 44.55 °C | 44.42 °C | 44.65 °C | 44.29 °C | 44.23 °C |
c2 | 43.8 °C | 44.59 °C | 44.29 °C | 44.21 °C | 43.58 °C | 44.08 °C |
c3 | 44 °C | 45.01 °C | 44.87 °C | 44.2 °C | 44.35 °C | 43.55 °C |
c4 | 44.3 °C | 45.89 °C | 45.09 °C | 45.21 °C | 45.08 °C | 44.27 °C |
c5 | 42.77 °C | 44.29 °C | 43.41 °C | 42.68 °C | 41.77 °C | 41.6 °C |
c6 | 41.41 °C | 42.13 °C | 42.57 °C | 41.02 °C | 40.6 °C | 39.93 °C |
Item | Value | Description |
---|---|---|
Dependent Variable | Image value | Variable being predicted or explained in the analysis |
R-squared | 0.636 | Proportion of variance in the dependent variable explained by the model (63.6%) |
Adjusted R-squared | 0.629 | Adjusted R-squared considering the number of predictors |
F-statistic | 91.60 | Overall fit of the model |
Prob (F-statistic) | 9.51 × 10−24 | p-value for the F-statistic, assessing the significance of the model |
Log-Likelihood | −98.721 | Log-likelihood of the model fit |
AIC | 203.4 | Akaike Information Criterion, a measure of model quality |
BIC | 211.5 | Bayesian Information Criterion, a measure of model quality |
Df Residuals | 105 | Degrees of freedom of residuals |
Df Model | 2 | Number of predictors in the model |
Omnibus | 0.827 | Omnibus test statistic for the normality of residuals |
Prob (Omnibus) | 0.661 | p-value of the Omnibus test |
Durbin–Watson | 1.321 | Durbin–Watson statistic for testing the independence of residuals |
Jarque–Bera (JB) | 0.909 | Jarque–Bera test statistic for the normality of residuals |
Skew | 0.111 | Measurement of the asymmetry (skewness) of residuals |
Kurtosis | 2.609 | Measurement of the peak of residuals |
Prob(JB) | 0.635 | p-value of the Jarque–Bera test |
Cond. No. | 1.08 | Condition number indicating the degree of multicollinearity |
Features | VIF Factor |
---|---|
Constant | 1.0 |
Incidence angle | 1.0056909218225500 |
Actual value | 1.0056909218225500 |
Features | Coef | Std Err | t | P > |t| | [0.025 | 0.975] |
---|---|---|---|---|---|---|
Const | 3.708 × 10−12 | 0.059 | 6.29 × 10−11 | 1.000 | −0.117 | 0.117 |
Incidence angle | −0.4004 | 0.059 | −6.778 | 0.000 | −0.518 | −0.283 |
Actual value | 0.6600 | 0.059 | 11.173 | 0.000 | 0.543 | 0.777 |
Position of UAV | Number 1 Angle of Incidence | Number 2 Angle of Incidence | Number 3 Angle of Incidence | Number 4 Angle of Incidence | Number 5 Angle of Incidence | Number 6 Angle of Incidence |
---|---|---|---|---|---|---|
a1 | 16.72° | 18.63° | 15.47° | 17.09° | 15.22° | 17.90° |
a2 | 6.98° | 6.16° | 5.91° | 8.35° | 7.89° | 10.24° |
a3 | 2.78° | 3.06° | 2.66° | 4.20° | 6.97° | 6.99° |
a4 | 10.0° | 10.71° | 10.94° | 10.45° | 13.52° | 11.85° |
a5 | 19.41° | 20.12° | 20.40° | 19.41° | 22.30° | 20.12° |
a6 | 25.68° | 23.72° | 26.69° | 25.53° | 28.36° | 26.04° |
b1 | 22.89° | 19.33° | 19.70° | 24.10° | 16.86° | 18.21° |
b2 | 14.33° | 9.75° | 10.75° | 7.17° | 7.64° | 9.09° |
b3 | 8.35° | 8.13° | 4.51° | 7.81° | 0.91° | 1.29° |
b4 | 7.86° | 12.80° | 7.77° | 5.33° | 9.34° | 8.16° |
b5 | 13.87° | 20.46° | 15.95° | 12.12° | 11.53° | 16.77° |
b6 | 20.86° | 27.09° | 22.82° | 18.76° | 25.01° | 25.68° |
c1 | 32.21° | 22.58° | 25.95° | 17.89° | 19.13° | 18.61° |
c2 | 23.94° | 16.09° | 17.65° | 11.22° | 10.55° | 9.85° |
c3 | 17.09° | 13.57° | 11.38° | 10.42° | 5.58° | 4.60° |
c4 | 11.22° | 15.98° | 8.37° | 14.48° | 9.19° | 9.03° |
c5 | 10.82° | 21.85° | 12.74° | 21.38° | 16.73° | 16.79° |
c6 | 14.92° | 28.44° | 19.28° | 28.57° | 24.38° | 24.55° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.; Khoshelham, K.; Lee, K.; Jung, S.; Kim, D.; Lee, W. Effect of Incidence Angle on Temperature Measurement of Solar Panel with Unmanned Aerial Vehicle-Based Thermal Infrared Camera. Remote Sens. 2024, 16, 1607. https://doi.org/10.3390/rs16091607
Shin H, Khoshelham K, Lee K, Jung S, Kim D, Lee W. Effect of Incidence Angle on Temperature Measurement of Solar Panel with Unmanned Aerial Vehicle-Based Thermal Infrared Camera. Remote Sensing. 2024; 16(9):1607. https://doi.org/10.3390/rs16091607
Chicago/Turabian StyleShin, Hyeongil, Kourosh Khoshelham, Kirim Lee, Sejung Jung, Dohoon Kim, and Wonhee Lee. 2024. "Effect of Incidence Angle on Temperature Measurement of Solar Panel with Unmanned Aerial Vehicle-Based Thermal Infrared Camera" Remote Sensing 16, no. 9: 1607. https://doi.org/10.3390/rs16091607
APA StyleShin, H., Khoshelham, K., Lee, K., Jung, S., Kim, D., & Lee, W. (2024). Effect of Incidence Angle on Temperature Measurement of Solar Panel with Unmanned Aerial Vehicle-Based Thermal Infrared Camera. Remote Sensing, 16(9), 1607. https://doi.org/10.3390/rs16091607