Spatial and Temporal Evolution of Precipitation in the Bahr el Ghazal River Basin, Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Observational Data
2.2.2. CRU TS
2.2.3. ERA5
2.2.4. NCEP
2.3. Methods
2.3.1. Data Preprocessing
2.3.2. Evaluation Metrics
3. Results
3.1. Comparative Assessment of the Three Datasets with Observed Data on Time Scales
3.2. Comparative Assessment of Three Datasets with Observations at Spatial Scales
3.3. Bahr el Ghazal River Basin Precipitation Trend Analysis
4. Discussion
4.1. Applicability of Reanalysis Datasets
4.2. Characterization of the Spatial and Temporal Evolution of Precipitation in the Bahr el Ghazal Basin
5. Conclusions
- Comparative analysis unveiled that the CRU TS dataset excels in simulating precipitation characteristics in the Bahr el Ghazal River Basin, particularly at monthly, seasonal, and annual scales.
- Temporal distribution analysis of precipitation in the Bahr el Ghazal River Basin highlighted a concentration during the wet season from May to October, with the zenith of precipitation occurring in July and August. Contributions to annual precipitation are notably prominent from June to August.
- Spatial distribution analysis delineated spatial variability in precipitation across the Bahr el Ghazal River Basin. During the dry season, precipitation is virtually absent throughout the entire Basin. In the wet season, precipitation gradually intensifies from north to south, with scarcity in the northern region and concentration in the southwestern part of the Basin.
- Based on climate zones, the Bahr el Ghazal River Basin was stratified into three regions. Each of these regions experienced a significant breakpoint in precipitation in 1967, followed by a discernible upward trajectory in precipitation from 1967 to 2022.
- Spatial trend analysis showcased a northward shift in the 800 mm precipitation line, signifying a moistening trend in the northern part of the Bahr el Ghazal River Basin.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foufoula-Georgiou, E.; Guilloteau, C.; Nguyen, P.; Aghakouchak, A.; Hsu, K.-L.; Busalacchi, A.; Turk, F.J.; Peters-Lidard, C.; Oki, T.; Duan, Q.; et al. Advancing precipitation estimation, prediction, and impact studies. Bull. Am. Meteorol. Soc. 2020, 101, E1584–E1592. [Google Scholar] [CrossRef] [PubMed]
- Kucera, P.A.; Ebert, E.E.; Turk, F.J.; Levizzani, V.; Kirschbaum, D.; Tapiador, F.J.; Loew, A.; Borsche, M. Precipitation from space: Advancing Earth system science. Bull. Am. Meteorol. Soc. 2013, 94, 365–375. [Google Scholar] [CrossRef]
- Stephens, E.; Day, J.J.; Pappenberger, F.; Cloke, H. Precipitation and floodiness. Geophys. Res. Lett. 2015, 42, 10,316–10,323. [Google Scholar] [CrossRef]
- Fowler, H.J.; Wilby, R.L. Detecting changes in seasonal precipitation extremes using regional climate model projections: Implications for managing fluvial flood risk. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate impacts on agriculture: Implications for crop production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef]
- Rojas, M.; Lambert, F.; Ramirez-Villegas, J.; Challinor, A.J. Emergence of robust precipitation changes across crop production areas in the 21st century. Proc. Natl. Acad. Sci. USA 2019, 116, 6673–6678. [Google Scholar] [CrossRef]
- Manel, S.; Gugerli, F.; Thuiller, W.; Alvarez, N.; Legendre, P.; Holderegger, R.; Gielly, L.; Taberlet, P.; IntraBioDiv Consortium. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol. Ecol. 2012, 21, 3729–3738. [Google Scholar] [CrossRef] [PubMed]
- Connolly-Boutin, L.; Smit, B. Climate change, food security, and livelihoods in sub-Saharan Africa. Reg. Environ. Chang. 2016, 16, 385–399. [Google Scholar] [CrossRef]
- Tarek, M.; Brissette, F.P.; Arsenault, R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci. 2020, 24, 2527–2544. [Google Scholar] [CrossRef]
- Ababaei, B. Spatio-temporal variations of seven weather variables in Iran: Application of CRU TS and GPCC data sets. Irrig. Drain. 2020, 69, 164–185. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. NCEP climate forecast system reanalysis (CFSR) monthly products, January 1979 to December 2010. Bull. Amer. Meteor. Soc. 2010, 91, 1015–1057. [Google Scholar] [CrossRef]
- Stephens, G.L.; L’Ecuyer, T.; Forbes, R.; Gettelmen, A.; Golaz, J.; Bodas-Salcedo, A.; Suzuki, K.; Gabriel, P.; Haynes, J. Dreary state of precipitation in global models. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Fallah, A.; Rakhshandehroo, G.R.; Berg, P.; O, S.; Orth, R. Evaluation of precipitation datasets against local observations in southwestern Iran. Int. J. Climatol. 2020, 40, 4102–4116. [Google Scholar] [CrossRef]
- Haiden, T.; Kann, A.; Wittmann, C.; Pistotnik, G.; Bica, B.; Gruber, C. The Integrated Nowcasting through Comprehensive Analysis (INCA) system and its validation over the Eastern Alpine region. Weather Forecast. 2011, 26, 166–183. [Google Scholar] [CrossRef]
- Roffe, S.J.; van der Walt, A.J. Representation and evaluation of southern Africa’s seasonal mean and extreme temperatures in the ERA5-based reanalysis products. Atmos. Res. 2023, 284, 106591. [Google Scholar] [CrossRef]
- Sultana, R.; Nasrollahi, N. Evaluation of remote sensing precipitation estimates over Saudi Arabia. J. Arid Environ. 2018, 151, 90–103. [Google Scholar] [CrossRef]
- Sorooshian, S.; AghaKouchak, A.; Arkin, P.; Eylander, J.; Foufoula-Georgiou, E.; Harmon, R.; Hendrickx, J.M.; Imam, B.; Kuligowski, R.; Skahill, B.; et al. Advanced concepts on remote sensing of precipitation at multiple scales. Bull. Am. Meteorol. Soc. 2011, 92, 1353–1357. [Google Scholar] [CrossRef]
- Arkin, P.A.; Meisner, B.N. The relationship between large-scale convective rainfall and cold cloud over the western hemisphere during 1982-84. Mon. Weather Rev. 1987, 115, 51–74. [Google Scholar] [CrossRef]
- Ba, M.B.; Gruber, A. GOES multispectral rainfall algorithm (GMSRA). J. Appl. Meteorol. Climatol. 2001, 40, 1500–1514. [Google Scholar] [CrossRef]
- Griffith, C.G.; Woodley, W.L.; Grube, P.G.; Martin, D.W.; Stout, J.; Sikdar, D.N. Rain estimation from geosynchronous satellite imagery—Visible and infrared studies. Mon. Weather Rev. 1978, 106, 1153–1171. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Liu, G.; Curry, J.A. Retrieval of precipitation from satellite microwave measurement using both emission and scattering. J. Geophys. Res. Atmos. 1992, 97, 9959–9974. [Google Scholar] [CrossRef]
- Weng, F.; Zhao, L.; Ferraro, R.R.; Poe, G.; Li, X.; Grody, N.C. Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci. 2003, 38, 33-1–33-3. [Google Scholar] [CrossRef]
- Iguchi, T.; Kozu, T.; Meneghini, R.; Awaka, J.; Okamoto, K.I. Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteorol. Climatol. 2000, 39, 2038–2052. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. In Renewable Energy; Routledge: London, UK, 2011; pp. Vol1_146–Vol1_194. [Google Scholar]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Muñoz-Sabater, J.; Pappenberger, F.; et al. ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 2015, 19, 389–407. [Google Scholar] [CrossRef]
- Jiao, D.; Xu, N.; Yang, F.; Xu, K. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Sci. Rep. 2021, 11, 17956. [Google Scholar] [CrossRef]
- Kishore, P.; Jyothi, S.; Basha, G.; Rao, S.V.B.; Rajeevan, M.; Velicogna, I.; Sutterley, T.C. Precipitation climatology over India: Validation with observations and reanalysis datasets and spatial trends. Clim. Dyn. 2016, 46, 541–556. [Google Scholar] [CrossRef]
- Huang, D.Q.; Zhu, J.; Zhang, Y.C.; Huang, Y.; Kuang, X.Y. Assessment of summer monsoon precipitation derived from five reanalysis datasets over East Asia. Q. J. R. Meteorol. Soc. 2016, 142, 108–119. [Google Scholar] [CrossRef]
- Duethmann, D.; Zimmer, J.; Gafurov, A.; Güntner, A.; Kriegel, D.; Merz, B.; Vorogushyn, S. Evaluation of areal precipitation estimates based on downscaled reanalysis and station data by hydrological modelling. Hydrol. Earth Syst. Sci. 2013, 17, 2415–2434. [Google Scholar] [CrossRef]
- Amjad, M.; Yilmaz, M.T.; Yucel, I.; Yilmaz, K.K. Performance evaluation of satellite-and model-based precipitation products over varying climate and complex topography. J. Hydrol. 2020, 584, 124707. [Google Scholar] [CrossRef]
- Aggarwal, D.; Attada, R.; Shukla, K.K.; Chakraborty, R.; Kunchala, R.K. Monsoon precipitation characteristics and extreme precipitation events over Northwest India using Indian high resolution regional reanalysis. Atmos. Res. 2022, 267, 105993. [Google Scholar] [CrossRef]
- Acharya, S.C.; Nathan, R.; Wang, Q.J.; Su, C.H.; Eizenberg, N. An evaluation of daily precipitation from a regional atmospheric reanalysis over Australia. Hydrol. Earth Syst. Sci. 2019, 23, 3387–3403. [Google Scholar] [CrossRef]
- Bukovsky, M.S.; Karoly, D.J. A brief evaluation of precipitation from the North American Regional Reanalysis. J. Hydrometeorol. 2007, 8, 837–846. [Google Scholar] [CrossRef]
- Gokmen, M. Spatio-temporal trends in the hydroclimate of Turkey for the last decades based on two reanalysis datasets. Hydrol. Earth Syst. Sci. 2016, 20, 3777–3788. [Google Scholar] [CrossRef]
- Yazdandoost, F.; Moradian, S.; Izadi, A.; Bavani, A.M. A framework for developing a spatial high-resolution daily precipitation dataset over a data-sparse region. Heliyon 2020, 6, e05091. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Wang, H.; Zhang, Y. Assessment of GPM IMERG and radar quantitative precipitation estimation (QPE) products using dense rain gauge observations in the Guangdong-Hong Kong-Macao Greater Bay Area, China. Atmos. Res. 2020, 236, 104834. [Google Scholar] [CrossRef]
- Yu, Y.; Schneider, U.; Yang, S.; Becker, A.; Ren, Z. Evaluating the GPCC Full Data Daily Analysis Version 2018 through ETCCDI indices and comparison with station observations over mainland of China. Theor. Appl. Climatol. 2020, 142, 835–845. [Google Scholar] [CrossRef]
- Tanır Kayıkçı, E.; Zengin Kazancı, S. Comparison of regression-based and combined versions of inverse distance weighted methods for spatial interpolation of daily mean temperature data. Arab. J. Geosci. 2016, 9, 690. [Google Scholar] [CrossRef]
- Cavazos, T.; Hewitson, B.C. Performance of NCEP–NCAR reanalysis variables in statistical downscaling of daily precipitation. Clim. Res. 2005, 28, 95–107. [Google Scholar]
- Xin, Y.; Lu, N.; Jiang, H.; Liu, Y.; Yao, L. Performance of ERA5 reanalysis precipitation products in the Guangdong-Hong Kong-Macao greater Bay Area, China. J. Hydrol. 2021, 602, 126791. [Google Scholar] [CrossRef]
- Dhorde, A.G.; Zarenistanak, M. Three-way approach to test data homogeneity: An analysis of temperature and precipitation series over southwestern Islamic Republic of Iran. J. Indian Geophys. Union 2013, 17, 233–242. [Google Scholar]
- Das, S.; Banerjee, S. Investigation of changes in seasonal streamflow and sediment load in the Subarnarekha-Burhabalang Basins using Mann-Kendall and Pettitt tests. Arab. J. Geosci. 2021, 14, 946. [Google Scholar] [CrossRef]
- Fatichi, S.; Caporali, E. A comprehensive analysis of changes in precipitation regime in Tuscany. Int. J. Climatol. 2009, 29, 1883–1893. [Google Scholar] [CrossRef]
- Rutkowska, A. Properties of the Cox–Stuart test for trend in application to hydrological series: The simulation study. Commun. Stat.-Simul. Comput. 2015, 44, 565–579. [Google Scholar] [CrossRef]
- Militino, A.F.; Moradi, M.; Ugarte, M.D. On the performances of trend and change-point detection methods for remote sensing data. Remote Sens. 2020, 12, 1008. [Google Scholar] [CrossRef]
- Salvacion, A.R.; Magcale-Macandog, D.B.; Cruz, P.C.S.; Saludes, R.B.; Pangga, I.B.; Cumagun, C.J.R. Evaluation and spatial downscaling of CRU TS precipitation data in the Philippines. Model. Earth Syst. Environ. 2018, 4, 891–898. [Google Scholar] [CrossRef]
- Shi, H.; Li, T.; Wei, J. Evaluation of the Gridded CRU TS Precipitation Dataset with the Point Raingauge Records over the Three-River Headwaters Region. J. Hydrol. 2017, 548, 322–332. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Steinkopf, J.; Engelbrecht, F. Verification of ERA5 and ERA-Interim precipitation over Africa at intra-annual and interannual timescales. Atmos. Res. 2022, 280, 106427. [Google Scholar] [CrossRef]
- Zhan, W.; Guan, K.; Sheffield, J.; Wood, E.F. Depiction of drought over sub-Saharan Africa using reanalyses precipitation data sets. J. Geophys. Res. Atmos. 2016, 121, 10–555. [Google Scholar] [CrossRef]
- Assamnew, A.D.; Mengistu Tsidu, G. Assessing improvement in the fifth-generation ECMWF atmospheric reanalysis precipitation over East Africa. Int. J. Climatol. 2023, 43, 17–37. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Ogunjobi, K.O.; Ajayi, V.O.; Adefisan, E.A.; Omotosho, J.A.; Sanogo, S. Comparison of five gridded precipitation products at climatological scales over West Africa. Meteorol. Atmos. Phys. 2017, 129, 669–689. [Google Scholar] [CrossRef]
- Ongoma, V.; Chen, H. Temporal and spatial variability of temperature and precipitation over East Africa from 1951 to 2010. Meteorol. Atmos. Phys. 2017, 129, 131–144. [Google Scholar] [CrossRef]
- Omoj, P.; Ogallo, L.; Oludhe, C.; Gitau, W. Temporal and spatial characteristics of the June-August seasonal rainfall and temperature over South Sudan. J. Meteorol. 2016, 9, 5. [Google Scholar] [CrossRef]
- Hamadalnel, M.; Zhu, Z.; Lu, R.; Shahid, S.; Ali, A.; Abdalla, I.; Elkanzi, M.; Bilal, M.; Bleiweiss, M.P. Spatio-temporal Investigations of Monsoon Precipitation and Its Historical and Future Trend over Sudan. Earth Syst. Environ. 2021, 5, 519–529. [Google Scholar] [CrossRef]
Dataset | Evaluation Metrics | WAU | MALAKAL | ||||||
---|---|---|---|---|---|---|---|---|---|
Monthly | Dry Season | Wet Season | Annual | Monthly | Dry Season | Wet Season | Annual | ||
CRU TS | R | 0.953 | 0.829 | 0.912 | 0.907 | 0.934 | 0.816 | 0.882 | 0.893 |
BIAS (%) | 3.02 | 15.86 | 1.69 | 3.02 | −0.64 | −23.08 | 0.62 | −0.64 | |
RMSE (mm) | 29.195 | 40.399 | 100.118 | 112.213 | 27.033 | 27.094 | 86.966 | 91.853 | |
MAE (mm) | 17.386 | 31.732 | 74.047 | 82.829 | 15.238 | 19.271 | 66.084 | 71.834 | |
ERA5 | R | 0.908 | 0.462 | 0.772 | 0.700 | 0.870 | 0.260 | 0.552 | 0.535 |
BIAS (%) | 5.07 | 42.58 | 1.19 | 5.07 | 17.94 | 88.84 | 13.95 | 17.94 | |
RMSE (mm) | 40.369 | 76.263 | 148.018 | 187.398 | 41.287 | 66.500 | 194.838 | 226.811 | |
MAE (mm) | 26.498 | 60.216 | 118.591 | 149.966 | 26.452 | 51.473 | 164.816 | 197.543 | |
NCEP | R | 0.929 | 0.775 | 0.849 | 0.850 | 0.904 | 0.793 | 0.843 | 0.864 |
BIAS (%) | 3.36 | 1.20 | 3.59 | 3.36 | −2.10 | −28.53 | −0.61 | −2.10 | |
RMSE (mm) | 35.712 | 43.099 | 131.007 | 139.406 | 32.411 | 29.162 | 99.912 | 104.840 | |
MAE (mm) | 22.051 | 34.279 | 101.780 | 110.039 | 18.508 | 20.378 | 79.112 | 82.479 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, J.; Dong, Z.; Fu, G.; Zhu, S.; Shao, Y.; Wu, S.; Li, Z. Spatial and Temporal Evolution of Precipitation in the Bahr el Ghazal River Basin, Africa. Remote Sens. 2024, 16, 1638. https://doi.org/10.3390/rs16091638
Meng J, Dong Z, Fu G, Zhu S, Shao Y, Wu S, Li Z. Spatial and Temporal Evolution of Precipitation in the Bahr el Ghazal River Basin, Africa. Remote Sensing. 2024; 16(9):1638. https://doi.org/10.3390/rs16091638
Chicago/Turabian StyleMeng, Jinyu, Zengchuan Dong, Guobin Fu, Shengnan Zhu, Yiqing Shao, Shujun Wu, and Zhuozheng Li. 2024. "Spatial and Temporal Evolution of Precipitation in the Bahr el Ghazal River Basin, Africa" Remote Sensing 16, no. 9: 1638. https://doi.org/10.3390/rs16091638
APA StyleMeng, J., Dong, Z., Fu, G., Zhu, S., Shao, Y., Wu, S., & Li, Z. (2024). Spatial and Temporal Evolution of Precipitation in the Bahr el Ghazal River Basin, Africa. Remote Sensing, 16(9), 1638. https://doi.org/10.3390/rs16091638