Validation of an AMSR2 Thin-Ice Thickness Algorithm for Global Sea-Ice-Covered Oceans Using Satellite and In Situ Observations
Abstract
:1. Introduction
2. Data and Method
2.1. Ice Types Derived from Sentinel-1 SAR
2.2. Thin-Ice Thickness Derived from MODIS
2.3. ADCP Data
3. Validation of the Thin-Ice Thickness Algorithm Using Satellite Data
3.1. Ice-Type Classification
3.2. Estimation of Thin-Ice Thickness
3.3. Application of the Algorithm
4. Validation of Active Frazil Using In Situ Observation
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maqueda, M.A.M.; Willmott, A.J.; Biggs, N.R.T. Polynya dynamics: A review of observations and modeling. Rev. Geophys. 2004, 42, RG1004. [Google Scholar] [CrossRef]
- Ohshima, K.; Fukamachi, Y.; Williams, G.; Nihashi, S.; Roquet, F.; Kitade, Y.; Tamura, T.; Hirano, D.; Herraiz-Borreguero, L.; Hindell, M.; et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nat. Geosci. 2013, 6, 235–240. [Google Scholar] [CrossRef]
- Shcherbina, A.Y.; Talley, L.D.; Rudnick, D.L. Direct observations of North Pacific ventilation: Brine rejection in the Okhotsk Sea. Science 2003, 302, 1952–1955. [Google Scholar] [CrossRef]
- Aagaard, K.; Coachman, L.; Carmack, E. On the halocline of the Arctic Ocean. Deep Sea Res. Part A 1981, 28, 529–545. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Martin, S. The contribution of Alaskan, Siberian, and Canadian coastal polynyas to the cold halocline layer of the Arctic Ocean. J. Geophys. Res. 1994, 99, 18343–18362. [Google Scholar] [CrossRef]
- Hoppema, M.; Anderson, L.G. Biogeochemistry of polynyas and their role in sequestration of anthropogenic constituents. In Polynyas: Windows into Polar Oceans; Smith, W.O., Barber, D.G., Eds.; Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 2007; Volume 74, pp. 193–221. [Google Scholar] [CrossRef]
- Yu, Y.; Rothrock, D.A. Thin ice thickness from satellite thermal imagery. J. Geophys. Res. 1996, 101, 25753–25766. [Google Scholar] [CrossRef]
- Cox, D.F.N.; Weeks, W.F. Salinity variations in sea ice. J. Glaciol. 1974, 13, 109–120. [Google Scholar] [CrossRef]
- Naoki, K.; Ukita, J.; Nishio, F.; Nakayama, M.; Comiso, J.C.; Gasiewski, A. Thin sea ice thickness as inferred from passive microwave and in situ observations. J. Geophys. Res. 2008, 113, C2. [Google Scholar] [CrossRef]
- Hwang, B.J.; Ehn, J.K.; Barber, D.G. Impact of ice temperature on microwave emissivity of thin newly formed sea ice. J. Geophys. Res. 2008, 113, C2. [Google Scholar] [CrossRef]
- Tamura, T.; Ohshima, K.I.; Markus, T.; Cavalieri, D.J.; Nihashi, S.; Hirasawa, N. Estimation of thin ice thickness and detection of fast ice from SSM/I data in the Antarctic Ocean. J. Atmos. Ocean. Technol. 2007, 24, 1757–1772. [Google Scholar] [CrossRef]
- Kashiwase, H.; Ohshima, K.I.; Fukamachi, Y.; Nihashi, S.; Tamura, T. Evaluation of AMSR-E thin ice thickness algorithm from a mooring-based observation: How can the satellite observe a sea-ice field with non-uniform thickness distribution? J. Atmos. Ocean. Technol. 2019, 36, 1623–1641. [Google Scholar] [CrossRef]
- Iwamoto, K.; Ohshima, K.I.; Tamura, T.; Nihashi, S. Estimation of thin ice thickness from AMSR-E data in the Chukchi Sea. Int. J. Remote Sens. 2013, 34, 468–489. [Google Scholar] [CrossRef]
- Martin, S.; Drucker, R.; Kwok, R.; Holt, B. Estimation of the thin ice thickness and heat flux for the Chukchi Sea Alaskan coast polynya from Special Sensor Microwave/Imager data, 1990–2001. J. Geophys. Res. 2004, 109, C10012. [Google Scholar] [CrossRef]
- Martin, S.; Drucker, R.; Kwok, R.; Holt, B. Improvements in the estimates of ice thickness and production in the Chukchi Sea polynyas derived from AMSR-E. Geophys. Res. Lett. 2005, 32, L05505. [Google Scholar] [CrossRef]
- Nihashi, S.; Ohshima, K.I.; Tamura, T.; Fukamachi, Y.; Saitoh, S. Thickness and production of sea ice in the Okhotsk Sea coastal polynyas from AMSR-E. J. Geophys. Res. 2009, 114, C10025. [Google Scholar] [CrossRef]
- Nihashi, S.; Ohshima, K.I.; Saitoh, S. Sea-ice production in the northern Japan Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2017, 127, 65–76. [Google Scholar] [CrossRef]
- Nihashi, S.; Ohshima, K.I. Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: Relationship and variability. J. Clim. 2015, 28, 3650–3670. [Google Scholar] [CrossRef]
- Nihashi, S.; Ohshima, K.I.; Tamura, T. Sea-ice production in Antarctic coastal polynyas estimated from AMSR2 Data and its validation using AMSR-E and SSM/I-SSMIS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3912–3922. [Google Scholar] [CrossRef]
- Nihashi, S.; Ohshima, K.I.; Tamura, T. Reconstruct the AMSR-E/2 thin ice thickness algorithm to create a long-term time series of sea-ice production in Antarctic coastal polynyas. Polar Sci. 2024, 39, 100978. [Google Scholar] [CrossRef]
- Tamura, T.; Ohshima, K.I.; Nihashi, S. Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett. 2008, 35, L07606. [Google Scholar] [CrossRef]
- Comiso, J.C.; Kwok, R.; Martin, S.; Gordon, A.L. Variability and trends in sea ice extent and ice production in the Ross Sea. J. Geophys. Res. 2011, 116, C04021. [Google Scholar] [CrossRef]
- Iwamoto, K.; Ohshima, K.I.; Tamura, T. Improved mapping of sea ice production in the Arctic Ocean using AMSR-E thin ice thickness algorithm. J. Geophys. Res. Oceans 2014, 119, 3574–3594. [Google Scholar] [CrossRef]
- Ohshima, K.I.; Tamura, N.; Kashiwase, H.; Nihashi, S.; Nakata, K.; Iwamoto, K. Estimation of sea ice production in the Bering Sea from AMSR-E and AMSR2 data, with special emphasis on the Anadyr polynya. J. Geophys. Res. Oceans 2020, 125, e2019JC016023. [Google Scholar] [CrossRef]
- Nakata, K.; Ohshima, K.I.; Nihashi, S. Estimation of thin ice thickness and discrimination of ice type from AMSR-E passive microwave data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 263–276. [Google Scholar] [CrossRef]
- Nakata, K.; Ohshima, K.I.; Nihashi, S. Mapping of active frazil for Antarctic coastal polynyas, with an estimation of sea-ice production. Geophys. Res. Lett. 2021, 48, e2020GL091353. [Google Scholar] [CrossRef]
- Nakata, K.; Ohshima, K.I. Mapping of active frazil and sea ice production in the Northern Hemisphere, with comparison to the Southern Hemisphere. J. Geophys. Res. Oceans 2022, 127, e2022JC018553. [Google Scholar] [CrossRef]
- Ohshima, K.I.; Fukamachi, Y.; Ito, M.; Nakata, K.; Simizu, D.; Ono, K.; Nomura, D.; Hashida, G.; Tamura, T. Dominant frazil ice production in the Cape Darnley polynya leading to Antarctic Bottom Water formation. Sci. Adv. 2022, 8, eadc9174. [Google Scholar] [CrossRef]
- Maeda, T.; Taniguchi, Y.; Imaoka, K. GCOM-W1 AMSR2 Level 1R product: Dataset of brightness temperature modified using the antenna pattern matching technique. IEEE Trans. Geosci. Remote Sens. 2016, 54, 770–782. [Google Scholar] [CrossRef]
- Markus, T.; Cavalieri, D.J. An enhancement of the NASA team sea ice algorithm. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1387–1398. [Google Scholar] [CrossRef]
- Comiso, J.C. Sea ice microwave emissivities from satellite passive microwave and infrared observations. J. Geophys. Res. 1983, 88, 7686–7704. [Google Scholar] [CrossRef]
- Comiso, J.C.; Cavalieri, D.; Parkinson, C.; Gloersen, P. Passive microwave algorithms for sea ice concentration: A comparison of two techniques. Remote Sens. Environ. 1997, 60, 357–384. [Google Scholar] [CrossRef]
- Comiso, J.C.; Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. 2008, 113, C023S07. [Google Scholar] [CrossRef]
- Nakata, K.; Ohshima, K.I.; Nihashi, S.; Kimura, N.; Tamura, T. Variability and ice production budget in the Ross Ice Shelf Polynya based on a simplified polynya model and satellite observations. J. Geophys. Res. Oceans 2015, 120, 6234–6252. [Google Scholar] [CrossRef]
- Riggs, G.; Hall, D. MODIS Sea Ice Products User Guide to Collection 6; National Snow and Ice Data Center, University of Colorado: Boulder, CO, USA, 2015; p. 50. [Google Scholar]
- Fraser, A.D.; Massom, R.A.; Michael, K.J. A method for compositing polar MODIS satellite images to remove cloud cover for landfast sea-ice detection. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3272–3282. [Google Scholar] [CrossRef]
- Paul, S.; Huntemann, M. Improved machine-learning-based open-water–sea-ice–cloud discrimination over wintertime Antarctic sea ice using MODIS thermal-infrared imagery. Cryosphere 2021, 15, 1551–1565. [Google Scholar] [CrossRef]
- Key, J.R.; Collins, J.B.; Fowler, C.; Stone, R.S. High-latitude surface temperature estimates from thermal satellite data. Remote Sens. Environ. 1997, 61, 302–309. [Google Scholar] [CrossRef]
- Drucker, R.; Martin, S.; Moritz, R. Observations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite imagery, upward looking sonar, and salinity/temperature moorings. J. Geophys. Res. 2003, 108, 3149–3166. [Google Scholar] [CrossRef]
- Mäkynen, M.; Similä, M. Thin ice detection in the Barents and Kara seas with AMSR-E and SSMIS radiometer data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5036–5053. [Google Scholar] [CrossRef]
- Ohshima, K.I.; Watanabe, T.; Nihashi, S. Surface heat budget of the Sea of Okhotsk during 1987–2001 and the role of sea ice on it. J. Meteorol. Soc. Jpn. 2003, 81, 653–677. [Google Scholar] [CrossRef]
- Kondo, J. Air-sea transfer coefficients in diabatic conditions. Bound.-Layer Meteorol. 1975, 9, 91–112. [Google Scholar] [CrossRef]
- Guest, P.S. Surface longwave radiation conditions in the eastern Weddell Sea during winter. J. Geophys. Res. 1998, 103, 30761–30771. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1959 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview (accessed on 1 November 2024). [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Deines, K.L. Backscatter estimation using broadband acoustic Doppler current profilers. In Proceedings of the IEEE Sixth Working Conference on Current Measurement (Cat. No. 99CH36331), San Diego, CA, USA, 11–13 March 1999; IEEE: Piscataway, NJ, USA, 1999; pp. 249–253. [Google Scholar]
- Ito, M.; Ohshima, K.I.; Fukamachi, Y.; Hirano, D.; Mahoney, A.R.; Jones, J.; Takatsuka, T.; Eicken, H. Favorable conditions for suspension freezing in an Arctic coastal polynya. J. Geophys. Res. 2019, 124, 8701–8719. [Google Scholar] [CrossRef]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood from Incomplete Data Via the EM Algorithm. J. Royal Stat. Soc. B 1977, 39, 1–22. [Google Scholar] [CrossRef]
- Moon, T.K. The expectation-maximization algorithm. IEEE Signal Process Mag. 1996, 13, 47–60. [Google Scholar] [CrossRef]
- Mathew, N.; Heygster, G.; Melsheimer, C. Surface Emissivity of the Arctic Sea Ice at AMSR-E Frequencies. IEEE Trans. Geosci. Remote Sens. 2009, 47, 4115–4124. [Google Scholar] [CrossRef]
- Andersen, S.; Tonboe, R.; Kern, S.; Schyberg, H. Improved Retrieval of Sea Ice Total Concentration from Spaceborne Passive Microwave Observations Using Numerical Weather Prediction Model Fields: An Intercomparison of Nine Algorithms. Remote Sens. Environ. 2006, 104, 374–392. [Google Scholar] [CrossRef]
- Lavergne, T.; Sørensen, A.M.; Kern, S.; Tonboe, R.; Notz, D.; Aaboe, S.; Bell, L.; Dybkjær, G.; Eastwood, S.; Gabarro, C.; et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI Sea-Ice Concentration Climate Data Records. Cryosphere 2019, 13, 49–78. [Google Scholar] [CrossRef]
- Mäkynen, M.; Similä, M. Arctic Thin Ice Detection Using AMSR2 and FY-3C MWRI Radiometer Data. Remote Sens. 2024, 16, 1600. [Google Scholar] [CrossRef]
- Shokr, M.; Asmus, K.; Agnew, T.A. Microwave Emission Observations from Artificial Thin Sea Ice: The Ice-Tank Experiment. IEEE Trans. Geosci. Remote Sens. 2009, 47, 325–338. [Google Scholar] [CrossRef]
- Kashiwase, H.; Ohshima, K.I.; Nakata, K.; Tamura, T. Improved SSM/I Thin Ice Algorithm with Ice Type Discrimination in Coastal Polynyas. J. Atmos. Oceanic Technol. 2021, 38, 823–835. [Google Scholar] [CrossRef]
- Fukamachi, Y.; Simizu, D.; Ohshima, K.I.; Eicken, H.; Mahoney, A.R.; Iwamoto, K.; Moriya, E.; Nihashi, S. Sea-ice thickness in the coastal northeastern Chukchi Sea from moored ice-profiling sonar. J. Glaciol. 2017, 63, 888–898. [Google Scholar] [CrossRef]
- Dethleff, D.; Kuhlmann, G. Entrainment of fine-grained surface deposits into new ice in the southwestern Kara Sea, Siberian Arctic. Cont. Shelf Res. 2009, 29, 691–701. [Google Scholar] [CrossRef]
- Ito, M.; Ohshima, K.I.; Fukamachi, Y.; Mizuta, G.; Kusumoto, Y.; Kikuchi, T. Underwater frazil ice and its suspension depth detected from ADCP backscatter data around sea ice edge in the Sea of Okhotsk. Cold Reg. Sci. Technol. 2021, 192, 103382. [Google Scholar] [CrossRef]
- Krumpen, T.; Belter, H.J.; Boetius, A.; Damm, E.; Haas, C.; Hendricks, S.; Nicolaus, M.; Nöthig, E.M.; Paul, S.; Peeken, I.; et al. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Sci. Rep. 2019, 9, 5459. [Google Scholar] [CrossRef] [PubMed]
Location | Mode | Date | Time (UTC) | ||
---|---|---|---|---|---|
Sentinel-1 | AMSR2 | ||||
Northern Hemisphere | Terpenia Bay | IW | 24 January 2018 | 08:12 | 02:42 |
Anadyr Bay | IW | 3 February 2020 | 18:06 | 14:41 | |
St. Lawrence Island | IW | 12 February 2021 | 17:43 | 14:46 | |
Chukchi Sea | IW | 27 January 2019 | 17:16 | 15:04 | |
Southern Hemisphere | Ross Sea | EW | 11 July 2016 | 10:36 | 10:20 |
Vincennes Bay | EW | 9 August 2016 | 12:27 | 07:22 | |
Shackleton Ice Shelf | EW | 11 August 2016 | 13:50 | 16:13 | |
Mackenzie Bay | EW | 19 June 2017 | 15:28 | 11:14 |
Category | Metrics | NH | SH | All | |
---|---|---|---|---|---|
Thin-ice thickness estimation (cm) | Active frazil | MAE | 1.4 | 2.8 | 2.0 |
RMSE | 2.9 | 4.8 | 3.8 | ||
Bias | 0.1 | 2.0 | 1.6 | ||
Thin solid ice | MAE | 4.0 | 5.8 | 5.0 | |
RMSE | 5.3 | 7.5 | 6.6 | ||
Bias | 0.1 | 4.2 | 2.7 | ||
Total thin ice | MAE | 3.8 | 5.7 | 4.8 | |
RMSE | 5.2 | 7.4 | 6.5 | ||
Bias | 0.1 | 4.1 | 2.6 | ||
Thin-ice detection | Unbalanced | Recall | 0.71 | 0.73 | 0.72 |
Precision | 0.86 | 0.42 | 0.58 | ||
Accuracy | 0.95 | 0.92 | 0.93 | ||
Balanced | Recall | 0.71 | 0.73 | 0.72 | |
Precision | 0.98 | 0.92 | 0.94 | ||
Accuracy | 0.85 | 0.83 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakata, K.; Kachi, M.; Shimada, R.; Yoshizawa, E.; Ito, M.; Ohshima, K.I. Validation of an AMSR2 Thin-Ice Thickness Algorithm for Global Sea-Ice-Covered Oceans Using Satellite and In Situ Observations. Remote Sens. 2025, 17, 171. https://doi.org/10.3390/rs17010171
Nakata K, Kachi M, Shimada R, Yoshizawa E, Ito M, Ohshima KI. Validation of an AMSR2 Thin-Ice Thickness Algorithm for Global Sea-Ice-Covered Oceans Using Satellite and In Situ Observations. Remote Sensing. 2025; 17(1):171. https://doi.org/10.3390/rs17010171
Chicago/Turabian StyleNakata, Kazuki, Misako Kachi, Rigen Shimada, Eri Yoshizawa, Masato Ito, and Kay I. Ohshima. 2025. "Validation of an AMSR2 Thin-Ice Thickness Algorithm for Global Sea-Ice-Covered Oceans Using Satellite and In Situ Observations" Remote Sensing 17, no. 1: 171. https://doi.org/10.3390/rs17010171
APA StyleNakata, K., Kachi, M., Shimada, R., Yoshizawa, E., Ito, M., & Ohshima, K. I. (2025). Validation of an AMSR2 Thin-Ice Thickness Algorithm for Global Sea-Ice-Covered Oceans Using Satellite and In Situ Observations. Remote Sensing, 17(1), 171. https://doi.org/10.3390/rs17010171