Spatiotemporal Evolution and Driving Mechanisms of kNDVI in Different Sections of the Yangtze River Basin Using Multiple Statistical Methods and the PLSPM Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.3. Methods
2.3.1. Construction of Time-Series kNDVI Data (2000–2022)
2.3.2. Theil–Sen Slope Estimation and Mann–Kendall (MK) Test
2.3.3. Coefficient of Variation (CV)
2.3.4. Hurst Index
2.3.5. The PLSPM Model
3. Results
3.1. Analysis of kNDVI Temporal Trends in the Yangtze River Basin from 2000 to 2022
3.2. Analysis of kNDVI Variation Stability in the Yangtze River Basin from 2000 to 2022
3.3. Analysis of kNDVI Future Trends in the Yangtze River Basin
3.4. Analysis of kNDVI Change Driving Mechanisms Based on the PLSPM Model
4. Discussion
4.1. Spatiotemporal Characteristics of kNDVI Changes in the Yangtze River Basin
4.2. Multi-Factor Driving Mechanisms of kNDVI Changes in the Yangtze River Basin
4.3. Contributions and Limitations of This Study
5. Conclusions
- The vegetation in the Yangtze River Basin has shown an overall improvement trend, albeit with significant regional disparities. The midstream section has demonstrated the most substantial improvement with the highest stability. The upstream section has exhibited a spatial pattern characterized by improvement in the east and stability in the west, while the downstream section has displayed a complex pattern of coexisting improvement and degradation. In the future, these regional disparities are expected to persist.
- Analyses based on the PLSPM models have revealed differentiated driving mechanisms across sections: the upstream section is predominantly influenced by the climatic factor, reflecting its high vegetation sensitivity to climate change; the midstream section is mainly controlled by the topographic factor while being significantly affected by human activities; the downstream section is characterized by coupled terrain–soil dominance and experiences the strongest pressure from socioeconomic development.
- Based on these findings, differentiated ecological protection strategies are recommended for different sections: the upstream should prioritize enhancing vegetation resilience to climate change; the midstream needs to balance topographic conditions with human activities; the downstream should focus on controlling the negative impacts of urban expansion while strengthening soil environment protection.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Evaluation Metrics | Terrain | Climate | Social Economy | Soil | |
---|---|---|---|---|---|
Upstream | rho | 0.67 | 0.94 | 0.98 | 0.77 |
AVE | 0.51 | 0.79 | 0.95 | 0.63 | |
Midstream | rho | 0.91 | 0.92 | 0.97 | 0.86 |
AVE | 0.83 | 0.7 | 0.95 | 0.74 | |
Downstream | rho | 0.94 | 0.89 | 0.98 | 0.88 |
AVE | 0.89 | 0.63 | 0.96 | 0.78 |
Path | Upstream | Midstream | Downstream |
---|---|---|---|
Terrain → Climate | ** | ** | ** |
Terrain → Social Economy | ** | ** | ** |
Terrain → Soil | ** | ** | ** |
Terrain → kNDVI | ** | ** | ** |
Climate → Social Economy | ** | ** | ** |
Climate → Soil | ** | ** | ** |
Climate → kNDVI | ** | ** | ** |
Social Economy → Soil | ** | * | ** |
Social Economy → kNDVI | ** | ** | ** |
Soil → kNDVI | ** | ** | ** |
Terrain | Climate | Social Economy | Soil | kNDVI | |
---|---|---|---|---|---|
Upstream | 1.11 | 2.64 | 1.17 | 1.48 | 2.43 |
Midstream | 4.14 | 2.8 | 1.15 | 1.87 | 1.39 |
Downstream | 3.86 | 2.65 | 1.29 | 3.62 | 2.98 |
References
- Caparros-Santiago, J.A.; Rodriguez-Galiano, V.; Dash, J. Land surface phenology as indicator of global terrestrial ecosystem dynamics: A systematic review. ISPRS J. Photogramm. Remote Sens. 2021, 171, 330–347. [Google Scholar] [CrossRef]
- Frappart, F.; Wigneron, J.; Li, X.; Liu, X.; Al-Yaari, A.; Fan, L.; Wang, M.; Moisy, C.; Masson, E.; Lafkih, Z.A.; et al. Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review. Remote Sens. 2020, 12, 2915. [Google Scholar] [CrossRef]
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications; Oxford University Press: New York, NY, USA, 2010; pp. 68–69. [Google Scholar]
- Qu, S.; Wang, L.; Lin, A.; Yu, D.; Yuan, M.; Li, C. Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecol. Indic. 2020, 108, 105724. [Google Scholar] [CrossRef]
- Phillips, O.L.; Lewis, S.L.; Baker, T.R.; Chao, K.J.; Higuchi, N. The changing Amazon forest. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Olson, K.R.; Gennadiyev, A.N.; Zhidkin, A.P.; Markelov, M.V. Impact of land use change and soil erosion in upper Mississippi River Valley on soil organic carbon retention and greenhouse gas emissions. Soil Sci. 2011, 176, 449–458. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, Q.; Sun, S.; Yang, W.; Zhang, Y.; Zhai, Y.; Liu, H.; Wang, H.; He, M.; Fan, P.; et al. Sandstorms in the Yellow River Basin, China in the 21st century: Spatiotemporal pattern and variation trend. Ecol. Indic. 2023, 154, 110601. [Google Scholar] [CrossRef]
- Tian, F.; Liu, L.Z.; Yang, J.H.; Wu, J.J. Vegetation greening in more than 94% of the Yellow River Basin (YRB) region in China during the 21st century caused jointly by warming and anthropogenic activities. Ecol. Indic. 2021, 125, 107479. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Wang, Q.; Ju, Q.; Wang, Y.; Fu, X.; Zhao, W.; Du, Y.; Jiang, P.; Hao, Z. Regional Patterns of Vegetation Dynamics and Their Sensitivity to Climate Variability in the Yangtze River Basin. Remote Sens. 2022, 14, 5623. [Google Scholar] [CrossRef]
- Chen, F.; Lin, A.; Zhu, H.; Niu, J. Quantifying Climate Change and Ecological Responses within the Yangtze River Basin, China. Sustainability 2018, 10, 3026. [Google Scholar] [CrossRef]
- Guo, R.; Cai, A.; Chen, X. The quantitative effects of climate change and human activity on the vegetation growth in the Yangtze River Basin. Front. Earth Sci. 2023, 11, 1168384. [Google Scholar] [CrossRef]
- Qu, S.; Wang, L.; Lin, A.; Zhu, H.; Yuan, M. What drives the vegetation restoration in Yangtze River basin, China: Climate change or anthropogenic factors? Ecol. Indic. 2018, 90, 438–450. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Qin, J.; Yang, L.; Zhang, Z.; Deng, Y.; Hu, Y.; Su, B. Monitoring long-term vegetation dynamics over the Yangtze River Basin, China, using multi-temporal remote sensing data. Ecosphere 2024, 15, e4809. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Sun, G.; Song, C.; Li, J.; Hao, L.; Liu, N. Climate Variability Masked Greening Effects on Water Yield in the Yangtze River Basin During 2001–2018. Water Resour. Res. 2021, 58, e2021WR030382. [Google Scholar] [CrossRef]
- Yi, L.; Sun, Y.; Ouyang, X.; Yin, S. Identifying the Impacts of Climate Change and Human Activities on Vegetation Cover Changes: A Case Study of the Yangtze River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 6239. [Google Scholar] [CrossRef]
- Pettorelli, N.; to Bühne, H.S.; Tulloch, A.; Dubois, G.; Macinnis-Ng, C.; Queirós, A.; Keith, D.; Wegmann, M.; Schrodt, F.; Stellmes, M.; et al. Satellite remote sensing of ecosystem functions: Opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 2018, 4, 71–93. [Google Scholar] [CrossRef]
- Toth, C.; Jóźków, G. Remote sensing platforms and sensors: A survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Wang, R.; Gamon, J.A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 2019, 231, 111218. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.; Jing, Y.; Yin, H.; Li, X.; Guan, X. High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102640. [Google Scholar] [CrossRef]
- Ozyavuz, M.; Bilgili, B.; Salici, A. Determination of vegetation changes with NDVI method. J. Environ. Prot. Ecol. 2015, 16, 264–273. [Google Scholar]
- Beck, H.E.; McVicar, T.R.; van Dijk, A.I.; Schellekens, J.; de Jeu, R.A.; Bruijnzeel, L.A. Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sens. Environ. 2011, 115, 2547–2563. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L.; et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, eabc7447. [Google Scholar] [CrossRef] [PubMed]
- Merrick, T.; Pau, S.; Detto, M.; Broadbent, E.; Bohlman, S.A.; Still, C.; Zambrano, A.A.A. Unveiling spatial and temporal heterogeneity of a tropical forest canopy using high-resolution NIRv, FCVI, and NIRvrad from UAS observations. Biogeosciences 2021, 18, 6077–6091. [Google Scholar] [CrossRef]
- Wang, Q.; Moreno-Martínez, Á.; Muñoz-Marí, J.; Campos-Taberner, M.; Camps-Valls, G. Estimation of vegetation traits with kernel NDVI. ISPRS J. Photogramm. Remote Sens. 2023, 195, 408–417. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Jiao, Y.; Cheng, Y.; Zhu, Z.; Wang, S.; Zhang, H. Investigating the spatio-temporal pattern evolution characteristics of vegetation change in Shendong coal mining area based on kNDVI and intensity analysis. Front. Ecol. Evol. 2023, 11, 1344664. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, R.; Lu, M.; Xu, M.; Liu, P.; Wang, L. A New Large-Scale Monitoring Index of Desertification Based on Kernel Normalized Difference Vegetation Index and Feature Space Model. Remote Sens. 2024, 16, 1771. [Google Scholar] [CrossRef]
- Seibert, J.; Stendahl, J.; Sørensen, R. Topographical influences on soil properties in boreal forests. Geoderma 2007, 141, 139–148. [Google Scholar] [CrossRef]
- Bueno de Mesquita, C.P.; Tillmann, L.S.; Bernard, C.D.; Rosemond, K.C.; Molotch, N.P.; Suding, K.N. Topographic heterogeneity explains patterns of vegetation response to climate change (1972–2008) across a mountain landscape, Niwot Ridge, Colorado. Arct. Antarct. Alp. Res. 2018, 50, e1504492. [Google Scholar] [CrossRef]
- Han, H.; Bai, J.; Ma, G.; Yan, J. Vegetation Phenological Changes in Multiple Landforms and Responses to Climate Change. ISPRS J. Photogramm. Remote Sens. 2020, 9, 111. [Google Scholar] [CrossRef]
- Wang, G.; Peng, W. Quantifying spatiotemporal dynamics of vegetation and its differentiation mechanism based on geographical detector. Environ. Sci. Pollut. Res. 2022, 29, 32016–32031. [Google Scholar] [CrossRef]
- Jung, S.; Park, J. Consistent Partial Least Squares Path Modeling via Regularization. Front. Psychol. 2018, 9, 174. [Google Scholar] [CrossRef] [PubMed]
- Henseler, J.; Hubona, G.S.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Schamberger, T.; Schuberth, F.; Henseler, J.; Dijkstra, T. Robust partial least squares path modeling. Behaviormetrika 2019, 47, 307–334. [Google Scholar] [CrossRef]
- Rigdon, E.E. Rethinking Partial Least Squares Path Modeling: In Praise of Simple Methods. Long Range Plan. 2012, 45, 341–358. [Google Scholar] [CrossRef]
- Rodrigues, V.S.; do Valle Junior, R.F.; Fernandes, L.S.S.; Pacheco, F. The assessment of water erosion using Partial Least Squares-Path Modeling: A study in a legally protected area with environmental land use conflicts. Sci. Total Environ. 2019, 691, 1225–1241. [Google Scholar] [CrossRef]
- Chen, J. Evolution and Water Resources Utilization of the Yangtze River; Springer: Singapore, 2020; pp. 123–134. [Google Scholar]
- Xu, X.; Hu, H.; Tan, Y.; Yang, G.; Zhu, P.; Jiang, B. Quantifying the impacts of climate variability and human interventions on crop production and food security in the Yangtze River Basin, China, 1990–2015. Sci. Total. Environ. 2019, 665, 379–389. [Google Scholar] [CrossRef]
- Yue, Y. The Changes of Future Runoff and Drought and Floodin the Yangtze River Basin under Climate Change. Ph.D. Thesis, East China Normal University, Shanghai, China, 2022. [Google Scholar]
- Li, Q. Study on Reconstructing Long-Term Terrestrial Water Storage Anomalies in the Yangtze River Basin and Analysis of Its Driving Factors. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2023. [Google Scholar]
- Han, G.; Chen, J.; He, C.; Li, S.; Wu, H.; Liao, A.; Peng, S. A web-based system for supporting global land cover data production. ISPRS J. Photogramm. Remote Sens. 2015, 103, 66–80. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Vannest, K.J.; Parker, R.I.; Davis, J.L.; Soares, D.A.; Smith, S.L. The Theil–Sen slope for high-stakes decisions from progress monitoring. Behav. Disord. 2012, 37, 271–280. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Döring, T.F.; Reckling, M. Detecting global trends of cereal yield stability by adjusting the coefficient of variation. Eur. J. Agron. 2018, 99, 30–36. [Google Scholar] [CrossRef]
- Tatli, H. Detecting persistence of meteorological drought via the Hurst exponent. Meteorol. Appl. 2015, 22, 763–769. [Google Scholar] [CrossRef]
- Gilmore, M.; Yu, C.; Rhodes, T.; Peebles, W. Investigation of rescaled range analysis, the Hurst exponent, and long-time correlations in plasma turbulence. Phys. Plasmas 2002, 9, 1312–1317. [Google Scholar] [CrossRef]
- Sharma, P.N.; Shmueli, G.; Sarstedt, M.; Danks, N.; Ray, S. Prediction-oriented model selection in partial least squares path modeling. Decis. Sci. 2021, 52, 567–607. [Google Scholar] [CrossRef]
- Tenenhaus, M.; Vinzi, V.E.; Chatelin, Y.M.; Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 2005, 48, 159–205. [Google Scholar] [CrossRef]
- Luo, J. Three-Dimensional Spatial and Temporal Characteristics of Soil pH and Acidification Driving Forces in Hubei, Hunan and Jiangxi Provinces. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2023. [Google Scholar]
- Marcoulides, K.M.; Raykov, T. Evaluation of Variance Inflation Factors in Regression Models Using Latent Variable Modeling Methods. Educ. Psychol. Meas. 2019, 79, 874–882. [Google Scholar] [CrossRef]
- Flinn, K.M.; Vellend, M.; Marks, P. Environmental causes and consequences of forest clearance and agricultural abandonment in central New York, USA. J. Biogeogr. 2005, 32, 439–452. [Google Scholar] [CrossRef]
- Jin, X.; Wan, L.; Zhang, Y.; Schaepman, M. Impact of economic growth on vegetation health in China based on GIMMS NDVI. Int. J. Remote Sens. 2008, 29, 3715–3726. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Yan, F. Vegetation Growth Status and Topographic Effects in Frozen Soil Regions on the Qinghai-Tibet Plateau. Remote Sens. 2022, 14, 4830. [Google Scholar] [CrossRef]
- Niu, Z.; Wang, L.; Fang, L.; Li, J.; Yao, R. Analysis of spatiotemporal variability in temperature extremes in the Yellow and Yangtze River basins during 1961–2014 based on high-density gauge observations. Int. J. Climatol. 2019, 40, 1–21. [Google Scholar] [CrossRef]
- Fan, Z.; Luo, Q.; Yu, H.; Liu, J.; Xia, W. Spatial–Temporal Evolution of the Coupling Coordination Degree between Water and Land Resources Matching and Cultivated Land Use Eco-Efficiency: A Case Study of the Major Grain-Producing Areas in the Middle and Lower Reaches of the Yangtze River. Land 2023, 12, 982. [Google Scholar] [CrossRef]
- Zhou, F.; Yao, M.; Fan, X.; Yin, G.; Meng, X.; Lin, Z. Evidence of warming from long-term records of climate and permafrost in the hinterland of the Qinghai–Tibet Plateau. Front. Environ. Sci. 2022, 10, 836085. [Google Scholar] [CrossRef]
- Norsang, G.; Kocbach, L.; Tsoja, W.; Stamnes, J.; Dahlback, A.; Nema, P. Ground-based measurements and modeling of solar UV-B radiation in Lhasa, Tibet. Atmos. Environ. 2009, 43, 1498–1502. [Google Scholar] [CrossRef]
- Zhang, A.; Li, X.; Zeng, F.; Jiang, Y.; Wang, R. Variation characteristics of different plant functional groups in alpine desert steppe of the Altun Mountains, northern Qinghai-Tibet Plateau. Front. Plant Sci. 2022, 13, 961692. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Shi, F.; An, Y.; Li, M.; Liu, Y. Spatio-temporal variations and coupling of human activity intensity and ecosystem services based on the four-quadrant model on the Qinghai-Tibet Plateau. Sci. Total Environ. 2020, 743, 140721. [Google Scholar]
- Dai, X.; Wang, P.C. A new classification of large-scale climate regimes around the Tibetan Plateau based on seasonal circulation patterns. Adv. Clim. Chang. Res. 2017, 8, 26–36. [Google Scholar] [CrossRef]
- Liu, X.; Yin, Z. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 183, 223–245. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, B. A Preliminary Study of the Heating Effect of the Tibetan Plateau. PLoS ONE 2013, 8, e68750. [Google Scholar] [CrossRef]
- Diao, C.; Liu, Y.; Zhao, L.; Zhuo, G.; Zhang, Y. Regional-scale vegetation-climate interactions on the Qinghai-Tibet Plateau. Ecol. Inform. 2021, 65, 101413. [Google Scholar] [CrossRef]
- Shao, Z.; Ding, L.; Li, D.; Altan, O.; Huq, M.E.; Li, C. Exploring the relationship between urbanization and ecological environment using remote sensing images and statistical data: A case study in the Yangtze River Delta, China. Sustainability 2020, 12, 5620. [Google Scholar] [CrossRef]
- Zhao, Y.; Yue, X.; Zhou, H.; Yu, Z.; Yuan, W. The effect of afforestation on a regional carbon sink: A case study in the Yangtze River Delta, China. Environ. Res. Lett. 2024, 19, 104064. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, P.; Li, M. Assessing potential ecosystem service dynamics driven by urbanization in the Yangtze River Economic Belt, China. J. Environ. Manag. 2021, 292, 112734. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wu, F.; Fang, Y.; Lu, N. Spatial and temporal variation Trend Analysis of vegetation cover in Urban agglomeration of Pearl River Delta from 2000 to 2015. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 615, p. 012028. [Google Scholar]
- Wu, Y.; Wang, X.; Zhou, J.; Bing, H.; Sun, H.; Wang, J. The fate of phosphorus in sediments after the full operation of the Three Gorges Reservoir, China. Environ. Pollut. 2016, 214, 282–289. [Google Scholar] [CrossRef]
- Wu, X.; Shen, Z.; Liu, R.; Ding, X. Land use/cover dynamics in response to changes in environmental and socio-political forces in the upper reaches of the Yangtze River, China. Sensors 2008, 8, 8104–8122. [Google Scholar] [CrossRef]
- Xiao, L. Efficient population size of urban agglomerations in the Yangtze River Economic Belt from a financial perspective. PLoS ONE 2024, 19, e0311090. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, X.; Ren, W.; He, J. Spatial pattern and driving factors of cropland ecosystem services in a major grain-producing region: A production-living-ecology perspective. Ecol. Indic. 2023, 155, 111024. [Google Scholar] [CrossRef]
- Yi, Y.; Hu, X.; Shi, C.; Kang, H.; Wang, B.; Zhang, C.; Liu, C. Vegetation dynamics and its relationship with climate factors in the middle reaches of the Yangtze River Based on MODIS NDVI. Acta Ecol. Sin. 2021, 41, 7796–7807. [Google Scholar]
- Chen, S.; Guo, K.; Wu, F.; Wu, C. Analysis of the spatial and temporal characteristics of the winter precipitation in Southern China. Clim. Chang. Res. Lett. 2014, 3, 165–175. [Google Scholar] [CrossRef]
- Liu, X.; Fan, Y.; Liu, P.; Wu, Q.; Hu, W.; Tian, K.; Huang, B. Characteristics of heavy metal pollution in farmland Soil of the Yangtze River economic belt based on bibliometric analysis. Huan Jing Ke Xue = Huanjing Kexue 2022, 43, 5169–5179. [Google Scholar]
- Zheng, Z.; Qingyun, H. Spatio-temporal evaluation of the urban agglomeration expansion in the middle reaches of the Yangtze River and its impact on ecological lands. Sci. Total Environ. 2021, 790, 148150. [Google Scholar] [CrossRef]
- Song, F.; Yang, X.; Wu, F. Suitable Pattern of the Natural Environment of Human Settlements in the Lower Reaches of the Yangtze River. Atmosphere 2019, 10, 200. [Google Scholar] [CrossRef]
- Qin, B.; Zhu, G. The nutrient forms, cycling and exchange flux in the sediment and overlying water system in lakes from the middle and lower reaches of Yangtze River. Sci. China Ser. D 2006, 49, 1–13. [Google Scholar] [CrossRef]
- Li, C.; Tian, Q.; Yu, R.; Zhou, B.; Xia, J.; Burke, C.; Dong, B.; Tett, S.F.; Freychet, N.; Lott, F.; et al. Attribution of extreme precipitation in the lower reaches of the Yangtze River during May 2016. Environ. Res. Lett. 2018, 13, 014015. [Google Scholar] [CrossRef]
- Zhou, X.; Cai, J.; Xu, J.; Liu, S.; Wang, B.; Zhang, H.; Yue, L.; Wu, L.; Wu, Y.; Chen, D. Climate regulates the effect of land-use change on the diversity of soil microbial functional groups and soil multifunctionality. J. Appl. Ecol. 2024, 61, 2087–2099. [Google Scholar] [CrossRef]
- Long, H. Analysis of the key factors of ecological environment protection in the national economic sustainable development goals. J. Environ. Public Health 2022, 2022, 3593587. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Wang, G.; Zhang, H.; Yu, R.; Li, N.; Zheng, J.; Yu, Y. Soil quality assessment in farmland of a rapidly industrializing area in the Yangtze Delta, China. Int. J. Environ. Res. Public Health 2022, 19, 12912. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Hao, H.; Zhang, C.; Wang, D. Analysis on the effects of ecological conservation redline policies in the Pearl River Delta area, China. Front. Ecol. Evol. 2023, 11, 1164602. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, W.; Martinez-Murillo, J.F.; Pereira, P. Loess Plateau: From degradation to restoration. Sci. Total Environ. 2020, 738, 140206. [Google Scholar] [CrossRef]
- Chen, D.; Li, Q.; He, F.; Chen, X.; Xu, S.; Zhao, X.; Li, J.; Liu, L.; Zhao, L. Restoration Measures Supported Surface Soil Carbon and Nitrogen Density in Alpine Grassland of Sanjiangyuan Region, China. Pol. J. Environ. Stud. 2020, 29, 3071–3083. [Google Scholar] [CrossRef]
- Wen, B.; Liu, C.; Tian, X.; Zhang, Q.; Huang, S.; Zhang, Y. Interactive Effects of Ecological Land Agglomeration and Habitat Quality on Soil Erosion in the Jinsha River Basin, China. Land 2024, 13, 229. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, X.; Deng, S.; Xu, H. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China. Catena 2021, 206, 105542. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.; Tu, Z.; Zhang, Y.; Tsendbazar, N.E. Monitoring vegetation change and their potential drivers in Yangtze River Basin of China from 1982 to 2015. Environ. Monit. Assess. 2020, 192, 642. [Google Scholar] [CrossRef] [PubMed]
- Jombart, T.; Dray, S.; Dufour, A.B. Finding essential scales of spatial variation in ecological data: A multivariate approach. Ecography 2009, 32, 161–168. [Google Scholar] [CrossRef]
- Xie, D.; Zhang, J.; Sun, P.; Pan, Y.; Yun, Y.; Yuan, Z. Remote sensing data fusion by combining STARFM and downscaling mixed pixel algorithm. J. Remote Sens. 2016, 20, 62–72. [Google Scholar]
Datasets | Spatial Resolution | Sources | Applications and Abbreviations |
---|---|---|---|
MOD09GA | 500 m | United States Geological Survey (https://www.usgs.gov/, accessed on 8 September 2024) | kNDVI Calculation |
TerraClimate | 4 km | University of California Merced (https://www.climatologylab.org/terraclimate.html, accessed on 5 July 2024) | Climate Variables Obtained: runoff (ro), ActualEvapotranspiration (aet), Reference Evapotranspiration (pet), Precipitation Accumulation (pr), Climate Water Deficit (def), Minimum Temperature (tmmn), Downward Surface Shortwave Radiation (srad), Maximum Temperature (tmmx), Soil Moisture (soil), Vapor Pressure (vap), Vapor Pressure Deficit (vpd), Wind Speed at 10 m (vs) |
China’s 1 km Grid GDP and Population Distribution Dataset | 1 km | Resource and Environmental Science Data Platform (https://www.resdc.cn/Default.aspx, accessed on 9 September 2024) | Socioeconomic Variables Obtained: Gross Domestic Product (gdp) and Population Density (pop) |
SRTMGL1_003 | 30 m | United States Geological Survey (https://www.usgs.gov/, accessed on 8 September 2024) | Terrain Variables Obtained: Elevation (DEM), Slope (slpoe), and Aspect (aspect) |
OpenLandMap Soil OrganicCarbon Content, USDA Soil Taxonomy Great Groups | 250 m | EnvirometriX (https://envirometrix.nl/, accessed on 15 September 2024) | Soil Variables Obtained: Soil Organic Carbon Content (soc) and Soil Class (soilclass) |
Z | kNDVI Change Trend Classification | |
---|---|---|
≥Threshold | Significant Increase | |
≥Threshold | Slight Increase | |
−Threshold threshold | Any Value | Stable |
≤−Threshold | Slight Decrease | |
≤−Threshold | Significant Decrease |
Hurst | Future kNDVI Change Trend Classification | |
---|---|---|
≥threshold | >0.5 | Persistent Increase |
≥threshold | <0.5 | Change from Increase to Decrease |
−threshold threshold | >0.5 | Stable |
Any value | =0.5 | Uncertain |
−threshold threshold | <0.5 | Uncertain |
≤−threshold | >0.5 | Persistent Decrease |
≤−threshold | <0.5 | Change from Decrease to Increase |
Latent Variables | Observed Variables |
---|---|
Terrain | dem, slope, aspect |
Climate | aet, def, pet, pr, srad, tmmn, tmmx, vap, vpd, vs |
Social Economy | gdp, pop |
Soil | ro, soil, soc, soilclass |
Path | Upstream | Midstream | Downstream | ||||||
---|---|---|---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | Direct | Indirect | Total | |
Terrain → Climate | 0.0526 | 0 | 0.0526 | −0.7948 | 0 | −0.7948 | −0.6475 | 0 | −0.6475 |
Terrain → Social Economy | −0.1907 | 0.0157 | −0.175 | −0.2835 | 0.0461 | −0.2374 | −0.1726 | −0.0402 | −0.2128 |
Terrain → Soil | 0.0151 | 0.0209 | 0.036 | 0.6652 | 0.0168 | 0.682 | 0.9019 | −0.2922 | 0.6097 |
Terrain → kNDVI | 0.1658 | 0.0627 | 0.2285 | 0.6079 | −0.1637 | 0.4442 | 0.1138 | 0.55 | 0.6638 |
Climate → Social Economy | 0.2882 | 0 | 0.2882 | −0.058 | 0 | −0.058 | 0.0622 | 0 | 0.0622 |
Climate → Soil | 0.5386 | 0.0122 | 0.5508 | −0.0235 | −0.0004 | −0.0239 | 0.5428 | −0.0173 | 0.5255 |
Climate → kNDVI | 0.6815 | 0.0349 | 0.7164 | 0.2378 | 0.0158 | 0.2536 | −0.2436 | 0.3089 | 0.0653 |
Social Economy → Soil | 0.0424 | 0 | 0.0424 | 0.008 | 0 | 0.008 | −0.2786 | 0 | −0.2786 |
Social Economy → kNDVI | −0.1265 | 0.0055 | −0.121 | −0.2523 | −0.0004 | −0.2527 | −0.1188 | −0.1677 | −0.2865 |
Soil → kNDVI | 0.1295 | 0 | 0.1295 | −0.0507 | 0 | −0.0507 | 0.6019 | 0 | 0.6019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Yao, F.; Ahmad, A.; Deng, F.; Fang, J. Spatiotemporal Evolution and Driving Mechanisms of kNDVI in Different Sections of the Yangtze River Basin Using Multiple Statistical Methods and the PLSPM Model. Remote Sens. 2025, 17, 299. https://doi.org/10.3390/rs17020299
Wu Z, Yao F, Ahmad A, Deng F, Fang J. Spatiotemporal Evolution and Driving Mechanisms of kNDVI in Different Sections of the Yangtze River Basin Using Multiple Statistical Methods and the PLSPM Model. Remote Sensing. 2025; 17(2):299. https://doi.org/10.3390/rs17020299
Chicago/Turabian StyleWu, Zhenjiang, Fengmei Yao, Adeel Ahmad, Fan Deng, and Jun Fang. 2025. "Spatiotemporal Evolution and Driving Mechanisms of kNDVI in Different Sections of the Yangtze River Basin Using Multiple Statistical Methods and the PLSPM Model" Remote Sensing 17, no. 2: 299. https://doi.org/10.3390/rs17020299
APA StyleWu, Z., Yao, F., Ahmad, A., Deng, F., & Fang, J. (2025). Spatiotemporal Evolution and Driving Mechanisms of kNDVI in Different Sections of the Yangtze River Basin Using Multiple Statistical Methods and the PLSPM Model. Remote Sensing, 17(2), 299. https://doi.org/10.3390/rs17020299