Frequent Glacial Hazard Deformation Detection Based on POT-SBAS InSAR in the Sedongpu Basin in the Himalayan Region
Abstract
:1. Introduction
2. Dataset and Method
2.1. Technique Flow
2.2. Calculation of 3D Slope Surface Displacement Based on POT-SBAS Data
3. POT-Derived Deformation Field in Sedongpu Basin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Wang, J.W.; Zhu, M.L.; Yao, T.D.; Pu, J.C.; Wang, J.F. Long-term glacier variations and the response to climate fluctuation in Qilian Mountains, China. J. Geogr. Sci. 2024, 34, 1904–1924. [Google Scholar] [CrossRef]
- Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar] [CrossRef]
- Shangguan, D.H.; Li, D.; Ding, Y.J.; Liu, J.; Anjum, M.N.; Li, Y.J.; Guo, W.Q. Determining the Events in a Glacial Disaster Chain at Badswat Glacier in the Karakoram Range Using Remote Sensing. Remote Sens. 2021, 13, 1165. [Google Scholar] [CrossRef]
- Cai, X.R.; Li, Z.Q.; Xu, C.H. Glacier wastage and its vulnerability in the Qilian Mountains. J. Geogr. Sci. 2022, 32, 117–140. [Google Scholar] [CrossRef]
- Zhuang, L.C.; Ke, C.Q.; Cai, Y.; Nourani, V. Measuring glacier changes in the Tianshan Mountains over the past 20 years using Google Earth Engine and machine learning. J. Geogr. Sci. 2023, 33, 1939–1964. [Google Scholar] [CrossRef]
- Dongare, C.U.; Deota, B.S.; Mankad, M.D.; Trivedi, Y.N. Quasquicentennial shrinkage of glacier as a testimony of regional climate change: An example of Janapa Garang glacier (JPG), Baspa basin, Western Himalayas, India. Clim. Chang. 2024, 177, 22. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, F.; Sun, P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 2009, 6, 139–152. [Google Scholar] [CrossRef]
- Kargel, J.S.; Leonard, G.J.; Shugar, D.H.; Haritashya, U.K.; Bevington, A.; Fielding, E.J.; Fujita, K.; Geertsema, M.; Miles, E.S.; Steiner, J.; et al. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 2016, 351, aac8353. [Google Scholar] [CrossRef] [PubMed]
- Martha, T.R.; Roy, P.; Mazumdar, R.; Govindharaj, K.B.; Kumar, K.V. Spatial characteristics of landslides triggered by the 2015 Mw 7.8 (Gorkha) and Mw 7.3 (Dolakha) earthquakes in Nepal. Landslides 2016, 14, 697–704. [Google Scholar] [CrossRef]
- Chen, N.S.; Liu, M.; Allen, S.; Deng, M.F.; Khanal, N.R.; Peng, T.X.; Tian, S.F.; Huggel, C.; Wu, K.L.; Rahman, M.; et al. Small outbursts into big disasters: Earthquakes exacerbate climate-driven cascade processes of the glacial lakes failure in the Himalayas. Geomorphology 2022, 422, 108539. [Google Scholar] [CrossRef]
- Yao, T.D.; Thompson, L.; Yang, W.; Yu, W.S.; Gao, Y.; Guo, X.J.; Yang, X.X.; Duan, K.Q.; Zhao, H.B.; Xu, B.Q. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, J.H.; Zhou, W.; Tong, L.Q.; Guo, Z.C.; Liu, G.; Yuan, W.L.; Sousa, J.J.; Perski, Z. 3D Surface velocity retrieval of mountain glacier using an offset tracking technique applied to ascending and descending SAR constellation data: A case study of the Yiga Glacier. Int. J. Digit. Earth 2019, 12, 614–624. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Liu, S.Y.; Wang, X. Review of maritime glacier mass balance in the southeastern Tibetan Plateau. J. Glaciol. Geocryol. 2022, 44, 930–945. (In Chinese) [Google Scholar]
- Zhang, Y.; Liu, S.Y.; Xu, J.L.; Shangguan, D.H. Glacier change and glacier runoff variation in the Tuotuo River basin, the source region of Yangtze River in western China. Environ. Geol. 2007, 56, 59–68. [Google Scholar] [CrossRef]
- Grinsted, A. An estimate of global glacier volume. Cryosphere 2013, 7, 141–151. [Google Scholar] [CrossRef]
- Shan, Z.H.; Li, Z.D.; Dong, X.J. Impact of glacier changes in the Himalayan Plateau disaster. Ecol. Inform. 2021, 63, 101316. [Google Scholar] [CrossRef]
- Li, Y.; Kang, S.C.; Zhang, X.L.; Li, C.L.; Chen, J.Z.; Qin, X.; Shao, L.L.; Tian, L.D. Dust dominates the summer melting of glacier ablation zones on the northeastern Tibetan Plateau. Sci. Total Environ. 2022, 856, 159214. [Google Scholar] [CrossRef]
- Yang, C. Evolution Characteristics and Formation Mechanism of the Glacier Avalanche—Debris flow Events in Sedongpu Gully Yarlung Zangbo River, Tibet. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2019. [Google Scholar]
- Li, W.L.; Zhao, B.; Xu, Q.; Scaringi, G.; Lu, H.Y.; Huang, R.Q. More frequent glacier-rock avalanches in Sedongpu gully are blocking the Yarlung Zangbo River in eastern Tibet. Landslides 2022, 19, 589–601. [Google Scholar] [CrossRef]
- Tong, L.Q.; Tu, J.N.; Pei, L.X.; Guo, Z.C.; Zheng, X.W.; Fan, J.H.; Zhong, C.; Liu, C.L.; Wang, S.S.; He, P.; et al. Preliminary discussion of the frequently debris flow events in Sedongpu Basin at Gyalaperi peak, Yarlung Zangbo River. J. Eng. Geol. 2018, 26, 1552–1561. (In Chinese) [Google Scholar]
- Liu, C.Z.; Lü, J.T.; Tong, L.Q.; Chen, H.Q.; Liu, Q.Q.; Xiao, R.H.; Tu, J.N. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet. Geol. China 2019, 46, 219–234. (In Chinese) [Google Scholar]
- An, B.S.; Wang, W.C.; Yang, W.; Wu, G.J.; Guo, Y.H.; Zhu, H.F.; Gao, T.; Bai, L.; Zhang, F.; Zeng, C.; et al. Process, mechanisms, and early warning of glacier collapse-induced river blocking disasters in the Yarlung Tsangpo Grand Canyon, southeastern Tibetan Plateau. Sci. Total Environ. 2021, 816, 151652. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.K.; Zhang, M.Z.; Xing, A.G. Numerical runout modeling and dynamic analysis of the ice avalanche-debris flow in Sedongpu Basin along Yarlung Zangbo River in Tibet. Chin. J. Geol. Hazard Control 2021, 32, 18–27. (In Chinese) [Google Scholar]
- Li, Z.; Li, B.; Gao, Y.; Wang, M.; Zhao, C.Y.; Liu, X.J. Remote sensing interpretation of development characteristics of high-position geological hazards in Sedongpu gully, downstream of Yarlung Zangbo River. Chin. J. Geol. Hazard Control 2021, 32, 33–41. (In Chinese) [Google Scholar]
- Luo, S.Y.; Xiong, J.N.; Liu, S.; Hu, K.H.; Cheng, W.M.; Liu, J.; He, Y.F.; Sun, H.Z.; Cui, X.J.; Wang, X. New Insights into Ice Avalanche-Induced Debris Flows in Southeastern Tibet Using SAR Technology. Remote Sens. 2022, 14, 2603. [Google Scholar] [CrossRef]
- Huai, B.J.; Ding, M.H.; Ai, S.T.; Sun, W.J.; Wang, Y.T.; Gao, J.J. Glacial Debris Flow Blockage Event (2018) in the Sedongpu Basin of the Yarlung Zangbo River, China: Occurrence Factors and Its Implications. Land 2022, 11, 1217. [Google Scholar] [CrossRef]
- Long, X.Y.; Hu, Y.X.; Gan, B.R.; Zhou, J.W. Numerical simulation of the mass movement process of the 2018 Sedongpu glacial debris flow by using the fluid-solid coupling method. J. Earth Sci. 2022, 35, 583–596. [Google Scholar] [CrossRef]
- Zhao, C.X.; Yang, W.; Westoby, M.; An, B.S.; Wu, G.J.; Wang, W.C.; Wang, Z.Y.; Wang, Y.J.; Dunning, S. Brief communication: An approximately 50 Mm3 ice-rock avalanche on 22 March 2021 in the Sedongpu valley, southeastern Tibetan Plateau. Cryosphere 2022, 16, 1333–1340. [Google Scholar] [CrossRef]
- Zhang, X.P.; Hu, K.H.; Liu, S.; Nie, Y.; Han, Y.Z. Comprehensive interpretation of the Sedongpu glacier-related mass flows in the eastern Himalayan syntaxis. J. Mt. Sci. 2022, 19, 2469–2486. [Google Scholar] [CrossRef]
- He, Y.; Wang, W.H.; Yan, H.W.; Zhang, L.F.; Chen, Y.D.; Yang, S.W. Characteristics of Surface Deformation in Lanzhou with Sentinel-1A TOPS. Geosciences 2020, 10, 99. [Google Scholar] [CrossRef]
- Zhang, R.; Xiang, W.; Liu, G.X.; Wang, X.W.; Mao, W.F.; Fu, Y.; Cai, J.L.; Zhang, B. Interferometric coherence and seasonal deformation characteristics analysis of saline soil based on Sentinel-1A time series imagery. J. Syst. Eng. Electron. 2021, 32, 1270–1283. [Google Scholar]
- Sanchez-Gamez, P.; Navarro, F.J. Glacier Surface Velocity Retrieval Using D-InSAR and Offset Tracking Techniques Applied to Ascending and Descending Passes of Sentinel-1 Data for Southern Ellesmere Ice Caps, Canadian Arctic. Remote Sens. 2017, 9, 442. [Google Scholar] [CrossRef]
- Feng, X.M.; Chen, Z.Q.; Li, G.; Ju, Q.; Yang, Z.B.; Cheng, X. Improving the capability of D-InSAR combined with offset-tracking for monitoring glacier velocity. Remote Sens. Environ. 2023, 285, 113394. [Google Scholar] [CrossRef]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmuller, U.; Werner, C.L. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef]
- Gomez, R.; Arigony-Neto, J.; De Santis, A.; Vijay, S.; Jana, R.; Rivera, A. Ice dynamics of union glacier from SAR offset tracking. Glob. Planet. Chang. 2019, 174, 1–15. [Google Scholar] [CrossRef]
- Wang, N.L.; Yao, T.D.; Xu, B.Q.; Chen, A.A.; Wang, W.C. Spatiotemporal Pattern, Trend, and Influence of Glacier Change in Tibetan Plateau and Surroundings under Global Warming. Bull. Chin. Acad. Sci. 2019, 34, 1220–1232. (In Chinese) [Google Scholar]
- Mahmoud, A.M.A.; Novellino, A.; Hussain, E.; Marsh, S.; Psimoulis, P.; Smith, M. The Use of SAR Offset Tracking for Detecting Sand Dune Movement in Sudan. Remote Sens. 2020, 12, 3410. [Google Scholar] [CrossRef]
- Haemmig, C.; Huss, M.; Keusen, H.; Hess, J.; Wegmüller, U.; Ao, Z.G.; Kulubayi, W. Hazard assessment of glacial lake outburst floods from Kyagar glacier, Karakoram mountains, China. Ann. Glaciol. 2014, 55, 34–44. [Google Scholar] [CrossRef]
- Wegnüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 Support in the GAMMA Software. Procedia Comput. Sci. 2016, 100, 1305–1312. [Google Scholar] [CrossRef]
- Tan, Q. Application of Differential InSAR in Monitoring Mining—Induced Subsidence Based on GAMMA Software. Geomat. Spat. Inf. Technol. 2019, 42, 233–236. [Google Scholar]
- Zhang, S.P.; Zhou, Z.Z.; Zhao, L.J.; Zhang, Y.Y. Extraction of Gangnalou glacier velocity based on SAR migration tracking method. Bull. Surv. Mapp. 2020, 11, 33–38. (In Chinese) [Google Scholar] [CrossRef]
- Zou, W.B.; Li, Y.; Li, Z.L.; Ding, X.L. Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points—A Review. Sensors 2009, 9, 1259–1281. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Luo, R.; Yang, Y.H.; Yong, Q. Method and Accuracy of Extracting Surface Deformation Field from SAR Image Coregistration. Acta Geod. Cartogr. Sin. 2015, 44, 301–308. (In Chinese) [Google Scholar]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Casu, F.; Manconi, A.; Pepe, A.; Lanari, R. Deformation Time-Series Generation in Areas Characterized by Large Displacement Dynamics: The SAR Amplitude Pixel-Offset SBAS Technique. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2752–2763. [Google Scholar] [CrossRef]
- Hu, B.; Wang, H.S.; Sun, Y.L.; Hou, J.G.; Liang, J. Long-Term Land Subsidence Monitoring of Beijing (China) Using the Small Baseline Subset (SBAS) Technique. Remote Sens. 2014, 6, 3648–3661. [Google Scholar] [CrossRef]
- Sun, L.Y.; Muller, J.P.; Chen, J.S. Time Series Analysis of Very Slow Landslides in the Three Gorges Region through Small Baseline SAR Offset Tracking. Remote Sens. 2017, 9, 1314. [Google Scholar] [CrossRef]
- Liu, W.; Wang, M.; Song, B.; Yu, T.B.; Huang, X.C.; Jiang, Y.; Sun, Y.J. Optical remote sensing monitoring and dynamic analysis of ice avalanche hazards in Midui glacier of Southeast Tibet. IOP Conf. Ser. Earth Environ. Sci. 2021, 861, 052028. [Google Scholar] [CrossRef]
- Pelto, M.; Panday, P.; Matthews, T.; Maurer, J.; Perry, L.B. Observations of Winter Ablation on Glaciers in the Mount Everest Region in 2020–2021. Remote Sens. 2021, 13, 2692. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Zhang, T.; Ju, L.L.; Leng, W.; Price, S.; Gunzburger, M. Thermomechanically coupled modelling for land-terminating glaciers: A comparison of two-dimensional, first-order and three-dimensional, full-Stokes approaches. J. Glaciol. 2015, 61, 702–712. [Google Scholar] [CrossRef]
- An, W.; Hou, S.; Zhang, W.; Wu, S.; Xu, H.; Pang, H.; Wang, Y.; Liu, Y. Possible recent warming hiatus on the northwestern Tibetan Plateau derived from ice core records. Sci. Rep. 2016, 6, 32813. [Google Scholar] [CrossRef] [PubMed]
- Post, A. Effects of the March 1964 Alaska Earthquake on Glaciers; United States Government Printing Office: Washington, DC, USA, 1967.
- Guo, W.Q.; Liu, S.Y.; Xu, L.; Wu, L.Z.; Shangguan, D.H.; Yao, X.J.; Wei, J.F.; Bao, W.J.; Yu, P.C.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Ke, L.H.; Ding, X.L.; Song, C.Q. Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Remote Sens. Environ. 2015, 168, 13–23. [Google Scholar] [CrossRef]
- Wang, W.P.; Yang, J.S.; Wang, Y.B. Dynamic processes of 2018 Sedongpu landslide in Namcha Barwa-Gyala Peri massif revealed by broadband seismic records. Landslides 2020, 17, 409–418. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Yang, Y.; Dong, X.; Xu, Q.; Li, P.; Zhao, J.; Chen, Q.; Hu, J.-C. Frequent Glacial Hazard Deformation Detection Based on POT-SBAS InSAR in the Sedongpu Basin in the Himalayan Region. Remote Sens. 2025, 17, 319. https://doi.org/10.3390/rs17020319
Li H, Yang Y, Dong X, Xu Q, Li P, Zhao J, Chen Q, Hu J-C. Frequent Glacial Hazard Deformation Detection Based on POT-SBAS InSAR in the Sedongpu Basin in the Himalayan Region. Remote Sensing. 2025; 17(2):319. https://doi.org/10.3390/rs17020319
Chicago/Turabian StyleLi, Haoliang, Yinghui Yang, Xiujun Dong, Qiang Xu, Pengfei Li, Jingjing Zhao, Qiang Chen, and Jyr-Ching Hu. 2025. "Frequent Glacial Hazard Deformation Detection Based on POT-SBAS InSAR in the Sedongpu Basin in the Himalayan Region" Remote Sensing 17, no. 2: 319. https://doi.org/10.3390/rs17020319
APA StyleLi, H., Yang, Y., Dong, X., Xu, Q., Li, P., Zhao, J., Chen, Q., & Hu, J.-C. (2025). Frequent Glacial Hazard Deformation Detection Based on POT-SBAS InSAR in the Sedongpu Basin in the Himalayan Region. Remote Sensing, 17(2), 319. https://doi.org/10.3390/rs17020319