Interannual Variability and Trends in Extreme Precipitation in Dronning Maud Land, East Antarctica
Abstract
:1. Introduction
2. Study Region, Data, and Methods
3. Results
3.1. Precipitation Characteristics
3.2. Synoptic Patterns Associated with Extreme Precipitation
3.3. Interannual and Decadal Variability in Extreme Precipitation Occurrences
3.4. Drivers of the Decreasing Trend in Extreme Precipitation
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bromwich, D.H. Snowfall in high southern latitudes. Rev. Geophys. 1988, 26, 149–168. [Google Scholar] [CrossRef]
- Shepherd, A.; Wingham, D. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 2007, 315, 1529–1532. [Google Scholar] [CrossRef] [PubMed]
- Davison, B.J.; Hogg, A.E.; Rigby, R.; Veldhuijsen, S.; van Wessem, J.M.; van den Broeke, M.R.; Holland, P.R.; Selley, H.L.; Dutrieux, P. Sea level rise from West Antarctic mass loss significantly modified by large snowfall anomalies. Nat. Commun. 2023, 14, 1479. [Google Scholar] [CrossRef]
- Thomas, E.R.; Van Wessem, J.M.; Roberts, J.; Isaksson, E.; Schlosser, E.; Fudge, T.J.; Vallelonga, P.; Medley, B.; Lenaerts, J.; Bertler, N.; et al. Review of regional Antarctic snow accumulation over the past 1000 years. Clim. Past 2017, 113, 1491–1513. [Google Scholar] [CrossRef]
- Jackson, S.L.; Vance, T.R.; Crockart, C.; Moy, A.; Plummer, C.; Abram, N.J. Climatology of the Mount Brown South ice core site in East Antarctica: Implications for the interpretation of a water isotope record. Clim. Past 2023, 19, 1653–1675. [Google Scholar] [CrossRef]
- Turner, J.; Phillips, T.; Thamban, M.; Rahaman, W.; Marshall, G.J.; Wille, J.D.; Favier, V.; Winton, V.H.L.; Thomas, E.; Wang, Z.; et al. The dominant role of extreme precipitation events in Antarctic snowfall Variability. Geophys. Res. Lett. 2019, 46, 3502–3511. [Google Scholar] [CrossRef]
- Casado, M.; Münch, T.; Laepple, T. Climatic information archived in ice cores: Impact of intermittency and diffusion on the recorded isotopic signal in Antarctica. Clim. Past 2020, 16, 1581–1598. [Google Scholar] [CrossRef]
- Servettaz, A.P.M.; Orsi, A.J.; Curran, M.A.; Moy, A.D.; Landais, A.; Agosta, C.; Winton, V.H.L.; Touzeau, A.; McConnell, J.R.; Werner, M.; et al. Snowfall and water stable isotope variability in East Antarctica controlled by warm synoptic events. J. Geophys. Res. 2020, 125, e2020JD032863. [Google Scholar] [CrossRef]
- Gorodetskaya, I.V.; Tsukernik, M.; Claes, K.; Ralph, M.F.; Neff, W.D.; van Lipzig, N.P.M. The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett. 2014, 41, 6199–6206. [Google Scholar] [CrossRef]
- Terpstra, A.; Gorodetskaya, I.V.; Sodemann, H. Linking sub-tropical evaporation and extreme precipitation over East Antarctica: An atmospheric river case study. J. Geophys. Res. 2021, 126, e2020JD033617. [Google Scholar] [CrossRef]
- Adusumilli, S.; Fish, M.A.; Fricker, H.A.; Medley, B. Atmospheric river precipitation contributed to rapid increases in surface height of the West Antarctic Ice Sheet in 2019. Geophys. Res. Lett. 2021, 48, e2020GL091076. [Google Scholar] [CrossRef]
- Wille, J.D.; Favier, V.; Gorodetskaya, I.V.; Agosta, C.; Kittel, C.; Beeman, J.C.; Jourdain, N.C.; Lenaerts, J.T.; Codron, F. Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res. 2021, 126, e2020JD033788. [Google Scholar] [CrossRef]
- Gao, Q.; . Sime, L.C.; McLaren, A.; Bracegirdle, T.J.; Capron, E.; Rhodes, R.H.; Steen-Larsen, H.C.; Shi, X.; Werner, M. Evaporative Controls of precipitation evaporation in Antarctica: An model study of ECHAM6 using innovative diagnostics of water indicators. Cyosphere 2024, 18, 683–703. [Google Scholar] [CrossRef]
- Jullien, N.; Vignon, É.; Sprenger, M.; Aemisegger, F.; Berne, A. Synoptic conditions and atmospheric moisture pathways associated with virga and precipitation over coastal Adélie Land in Antarctica. Cryosphere 2020, 14, 1685–1902. [Google Scholar] [CrossRef]
- Messmer, M.; Simmonds, I. Global analysis of cyclone-induced compound precipitation and wind extreme events. Weather Clim. Extrem. 2021, 32, 100324. [Google Scholar] [CrossRef]
- Fujita, S.; Holmlund, P.; Andersson, I.; Brown, I.; Enomoto, H.; Fujii, Y.; Fujita, K.; Fukui, K.; Furukawa, T.; Hansson, M.; et al. Spatial and temporal variability of snow accumu-lation rate on the East Antarctic ice divide between Dome Fuji and EPICA DML. Cryosphere 2011, 5, 1057–1081. [Google Scholar] [CrossRef]
- Gehring, J.; Vignon, É.; Billault-Roux, A.-C.; Ferrone, A.; Protat, A.; Alexander, S.; Alexis, B. Orographic flow influence on precipitation during an atmospheric river event at Davis, Antarctica. J. Geophys. Res. 2022, 127, e2021JD035210. [Google Scholar] [CrossRef]
- Welker, C.; Martius, O.; Froidevaux, P.; Reijmer, C.H.; Fischer, H. A climatological analysis of high-precipitation events in Dronning Maud Land, Antarctica, and associated large-scale atmospheric conditions. J. Geophys. Res. Atmos. 2014, 119, 11932–11954. [Google Scholar] [CrossRef]
- Wang, S.; Ding, M.; Liu, G.; Chen, W. Progress and mechanisms of persistent extreme rainfall events in the Antarctic Peninsula during austral summer. J. Clim. 2022, 35, 3642–3657. [Google Scholar] [CrossRef]
- Wang, S.; Ding, M.; Liu, G.; Li, G.; Chen, W. Blocking events in East Antarctica: Impact on precipitation and their association with large-scale atmospheric circulation modes. J. Clim. 2024, 37, 1333–1345. [Google Scholar] [CrossRef]
- Schlosser, E.; Manning, K.W.; Powers, J.G.; Duda, M.G.; Birnbaum, G.; Fujita, K. Characteristics of high-precipitation events in Dronning Maud Land, Antarctica. J. Geophys. Res. Atmos. 2010, 115, D14107. [Google Scholar] [CrossRef]
- Maclennan, M.L.; Lenaerts, J.T.M. Large-scale atmospheric drivers of snowfall over Thwaites Glacier, Antarctica. Geophys. Res. Lett. 2021, 48, e2021GL093644. [Google Scholar] [CrossRef]
- Birnbaum, G.; Brauner, R.; Ries, H. Synoptic situations causing high precipitation rates on the Antarctic plateau: Observations from Kohnen station, DML. Antarct. Sci. 2006, 18, 279–288. [Google Scholar] [CrossRef]
- Yu, L.; Yang, Q.; Vihma, T.; Jagovkina, S.; Liu, J.; Sun, Q.; Li, Y. Features of extreme precipitation at Progress Station, Antarctica. J. Clim. 2018, 31, 9087–9105. [Google Scholar] [CrossRef]
- Yang, R.; Yu, L.; Jagovkina, S.; Liang, K.; Yang, Q. Comparison of features of extreme precipitation between stations in inland and coastal Antarctica. Int. J. Climatol. 2023, 43, 996–1015. [Google Scholar] [CrossRef]
- Schlosser, E.; Stenni, B.; Valt, M.; Cagnati, A.; Powers, J.G.; Manning, K.W.; Raphael, M.; Duda, M.G. Precipitation and synoptic regime in two extreme years 2009 and 2010 at Dome C, Antarctica-implications for ice core interpretation. Atmos. Chem. Phys. 2016, 16, 4757–4770. [Google Scholar] [CrossRef]
- Marshall, G.J.; Thompson, D.W.J.; van den Broeke, M.R. The signature of Southern Hemisphere atmospheric circulation patterns in Antarctic precipitation. Geophys. Res. Lett. 2017, 44, 11580–11589. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, J.; Song, M.; Hu, Y. Changes in extreme temperature and precipitation over the southern extratropical continents in response to Antarctic sea ice loss. J. Clim. 2023, 36, 4755–4775. [Google Scholar] [CrossRef]
- Turner, J.; Lachlan-Cope, T.; Colwell, S.; Marshall, G.J. A positive trend in western Antarctic Peninsula precipitation over the last 50 years reflecting regional and Antarctic-wide atmospheric circulation changes. Ann. Glaciol. 2005, 41, 85–91. [Google Scholar] [CrossRef]
- Rotschky, G.; Holmlund, P.; Isaksson, E.; Mulvaney, R.; Oerter, H.; van den Broeke, M.R.; Winther, J.-G. A new surface accumulation map for western Dronning Maud Land, Antarctica, from interpolation of point measurements. J. Glaciol. 2007, 53, 385–398. [Google Scholar] [CrossRef]
- Thiery, W.; Gorodetskaya, I.V.; Bintanja, R.; van Lipzig, N.P.M.; van den Broeke, M.R.; Reijmer, C.H.; Munneke, P.K. Surface and snowdrift sublimation at Princess Elisabeth station, East Antarctica. Cryosphere 2012, 6, 841–857. [Google Scholar] [CrossRef]
- Reijmer, C.H.; van den Broeke, M.R. Temporal and spatial variability of the surface mass balance in Dronning Maud Land, Antarctica, as derived from automatic weather stations. J. Glaciol. 2003, 49, 512–520. [Google Scholar] [CrossRef]
- Noone, D.; Turner, J.; Mulvaney, R. Atmospheric signals and characteristics of accumulation in Dronning Maud Land, Antarctica. J. Geophys. Res. 1999, 104, 19191–19211. [Google Scholar] [CrossRef]
- Lenaerts, J.T.M.; van Meijgaard, E.; van den Broeke, M.R.; Ligtenberg, S.R.M.; Horwath, M.; Isaksson, E. Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys. Res. Lett. 2013, 40, 2684–2688. [Google Scholar] [CrossRef]
- Simon, S.; Turner, J.; Thamban, M.; Wille, J.D.; Deb, P. Spatiotemporal variability of extreme precipitation events and associated atmospheric processes over Dronning Maud Land, East Antarctica. J. Geophys. Res. 2024, 129, e2023JD038993. [Google Scholar] [CrossRef]
- Yang, D.; Simonenko, A. Comparison of the results of measurements of winter precipitation by six Tretyakov sensors at the experimental site “Valdai”. Atmos. Ocean 2013, 52, 39–53. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gossart, A.; Helsen, S.; Lenaerts, J.T.M.; Broucke, S.V.; van Lipzig, N.P.M.; Souverijns, N. An evaluation of surface climatology in state-of-the-art reanalyze over the Antarctic ice sheet. J. Clim. 2019, 32, 6899–6915. [Google Scholar] [CrossRef]
- Tetzner, D.; Thomas, E.; Allen, C. A validation of ERA5 reanalysis data in the southern Antarctic Peninsula—Ellsworth land region, and its implications for ice core studies. Geosciences 2019, 9, 289. [Google Scholar] [CrossRef]
- Dong, X.; Wang, Y.; Hou, S.; Ding, M.; Yin, B.; Zhang, Y. Robustness of the recent global atmospheric reanalyses for Antarctic near-surface wind speed climatology. J. Clim. 2020, 33, 4027–4043. [Google Scholar] [CrossRef]
- Caton Harrison, T.; Biri, S.; Bracegirdle, T.J.; King, J.C.; Kent, E.C.; Vignon, É.; Turner, J. Reanalysis representation of low-level winds in the Antarctic near-coastal region. Weather Clim. Dyn. 2022, 3, 1415–1437. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Zhang, H.-M. Extended reconstructed sea surface temperature version 5 (ERSSTv5), Upgrades, validations, and intercomparisons. J. Clim. 2017, 28, 911–930. [Google Scholar] [CrossRef]
- Nan, S.L.; Li, J.P. The relationship between summer precipitation in the Yangtze River valley and the previous Southern Hemisphere Annular Mode. Geophys. Res. Lett. 2003, 30, 2266. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 2000, 13, 1000–1016. [Google Scholar] [CrossRef]
- Mo, K.C.; Higgins, R.W. The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Weather. Rev. 1998, 126, 1581–1596. [Google Scholar] [CrossRef]
- Ciasto, L.M.; Simpkins, G.R.; England, M.H. Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. J. Clim. 2015, 28, 56–65. [Google Scholar] [CrossRef]
- Turner, J. The El Nino-southern oscillation and Antarctica. Int. J. Climatol. 2004, 24, 1–31. [Google Scholar] [CrossRef]
- Yu, L.; Zhong, S.; Sui, C.; Zhang, Z.; Sun, B. Synoptic mode of Antarctic summer sea ice superimposed on interannual and decadal variability. Adv. Clim. Change Res. 2021, 12, 147–161. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Li, S. Impacts of CP- and EP-EL Nino events on the Antarctic sea ice austral spring. J. Clim. 2021, 34, 9327–9348. [Google Scholar] [CrossRef]
- Liang, K.; Wang, J.; Luo, H.; Yang, Q. The role of atmospheric rivers in Antarctic sea ice variations. Geophys. Res. Lett. 2023, 50, e2022GL102588. [Google Scholar] [CrossRef]
- Yu, L.; Zhong, S.; Vihma, T.; Sui, C.; Sun, B. Multidecadal variations in North Atlantic SSTs modulate the relationship between ENSO and the South Atlantic Subtropical Dipole since 1900. Environ. Res. Lett. 2024, 19, 094001. [Google Scholar] [CrossRef]
- Yu, L.; Zhong, S.; Vihma, T.; Sui, C.; Sun, B. Enhanced interaction between ENSO and the South Atlantic Subtropical Dipole over the past four decades. Int. J. Climatol. 2024, 44, 4192–4205. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Zhong, S.; Jagovkina, S.; Sui, C.; Sun, B. Interannual Variability and Trends in Extreme Precipitation in Dronning Maud Land, East Antarctica. Remote Sens. 2025, 17, 324. https://doi.org/10.3390/rs17020324
Yu L, Zhong S, Jagovkina S, Sui C, Sun B. Interannual Variability and Trends in Extreme Precipitation in Dronning Maud Land, East Antarctica. Remote Sensing. 2025; 17(2):324. https://doi.org/10.3390/rs17020324
Chicago/Turabian StyleYu, Lejiang, Shiyuan Zhong, Svetlana Jagovkina, Cuijuan Sui, and Bo Sun. 2025. "Interannual Variability and Trends in Extreme Precipitation in Dronning Maud Land, East Antarctica" Remote Sensing 17, no. 2: 324. https://doi.org/10.3390/rs17020324
APA StyleYu, L., Zhong, S., Jagovkina, S., Sui, C., & Sun, B. (2025). Interannual Variability and Trends in Extreme Precipitation in Dronning Maud Land, East Antarctica. Remote Sensing, 17(2), 324. https://doi.org/10.3390/rs17020324