Development of Radar and Optical Tracking of Near-Earth Asteroids at the University of Tasmania
Abstract
:1. Introduction
- Reduced uncertainty in near-Earth-object orbits.
- Doubled detections, including a small fraction which are not visible from the northern hemisphere or those which have stronger signal-to-noise ratios (SNRs) from the southern hemisphere. Furthermore, Australia offers additional longitudinal coverage compared to Arecibo and Goldstone or when there are scheduling conflicts.
- Further characterisation, such as the diameter, mass, rotation and surface properties.
- Better estimates of the pole direction through sequential observations in the northern and southern hemispheres.
2. Materials and Methods
2.1. Radar Observation Technique
- a
- A continuous fixed wave centred at 7159.45 MHz. The Doppler shift observed at the receivers includes the up- and down-leg contributions.
- b
- A time-based shifted transmission frequency calculated to receive echoes at ATCA centred on 7159.45 MHz. This is the most common method of observation.
- c
- A time-based shifted transmission frequency calculated to receive echoes at one of the UTAS antennas centred on 7159.45 MHz (typically Hobart).
- d
- A monostatic dynamic tone or pulse centred for arrival at the same transmitting Goldstone antenna.
2.2. Experiment Setup
2.3. Data Processing
2.4. Signal Strength
2.5. Observations
3. Results
3.1. Moon Detection
3.2. 2014 HK129
3.3. 1994 PC1
3.4. 2003 UC20
3.5. 2024 MK
3.6. Optical Detection—2015 RN35
4. Discussion
4.1. Effectiveness of Data Processing Methods
4.2. UTAS Detections
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NEA | near-Earth asteroid |
NEO | near-Earth object |
ATCA | Australia Telescope Compact Array |
SNR | signal-to-noise ratio |
SHARP | Southern Hemisphere Asteroid Research Program |
CDSCC | Canberra Deep Space Communication Complex |
DSS | Deep Space Station |
Ti | Tidbinbilla 70 m (DSS-43) |
LD | Lunar Distances |
Hb | Hobart-12 m |
Ke | Katherine-12 m |
Yg | Yarragadee-12 m |
Ho | Hobart-26 m |
Cd | Ceduna-30 m |
LCP | left-circularly polarised |
RCP | right-circularly polarised |
GSSR | Goldstone Solar System Radar |
VLBI | Very Long Baseline Interferometry |
SDtracker | Spacecraft Doppler Tracker |
SCtracker | Multi-tone spacecraft tracker |
IF | intermediate frequency |
AU | Astronomical Unit |
References
- Ostro, S.J. Planetary radar astronomy. Rev. Mod. Phys. 1993, 65, 1235–1279. [Google Scholar] [CrossRef]
- Virkki, A.; Neish, C.; Rivera-Valentín, E.; Bhiravarasu, S.; Hickson, D.; Nolan, M.; Orosei, R. Planetary Radar—State-of-the-Art Review. Remote Sens. 2023, 15, 5605. [Google Scholar] [CrossRef]
- Goldstein, R.M. Radar Observations of Icarus. Science 1968, 162, 903–904. [Google Scholar] [CrossRef]
- Li, X.; Scheeres, D.; Qiao, D.; Liu, Z. Geophysical and orbital environments of asteroid 469219 2016 HO3. Astrodynamics 2022, 7, 7. [Google Scholar] [CrossRef]
- Ostro, S.J.; Giorgini, J.D. The role of radar in predicting and preventing asteroid and comet collisions with Earth. In Mitigation of Hazardous Comets and Asteroids, 1st ed.; Belton, M.J.S., Morgan, T.H., Samarasinha, N.H., Yeomans, D.K., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 38–65. [Google Scholar] [CrossRef]
- Giorgini, J.D.; Benner, L.A.; Ostro, S.J.; Nolan, M.C.; Busch, M.W. Predicting the Earth encounters of (99942) Apophis. Icarus 2008, 193, 1–19. [Google Scholar] [CrossRef]
- Horiuchi, S.; Molyneux, B.; Stevens, J.B.; Baines, G.; Benson, C.; Abu-Shaban, Z.; Giorgini, J.D.; Benner, L.A.M.; Naidu, S.P.; Phillips, C.J.; et al. Bistatic radar observations of near-earth asteroid (163899) 2003 SD220 from the southern hemisphere. Icarus 2021, 357, 114250. [Google Scholar] [CrossRef]
- Warner, B.D. Near-earth asteroid lightcurve analysis at CS3-palmer divide station: 2015 october–december. Minor Planet Bull. 2016, 43, 143–154. [Google Scholar] [PubMed]
- Rivera-Valentín, E.G.; Taylor, P.A.; Reddy, V.; Jao, J.S.; Benner, L.A.M.; Brozovic, M.; Naidu, S.P.; Virkki, A.K.; Marshall, S.E.; Sanchez, J.A.; et al. Radar and Near-Infrared Characterization of Near-Earth Asteroid (163899) 2003 SD220. In Proceedings of the 50th Annual Lunar and Planetary Science Conference, Lunar and Planetary Science Conference, Woodlands, TX, USA, 18–22 March 2019; p. 3016. [Google Scholar]
- Bondarenko, Y.; Marshalov, D.; Vavilov, D.; Medvedev, Y. Radar observations of near-Earth asteroid 2003 SD220. In Proceedings of the EPSC-DPS Joint Meeting 2019, Granada, Spain, 27 September–2 October 2019; Volume 13. [Google Scholar]
- Margot, J.L.; Nolan, M.C.; Benner, L.A.M.; Ostro, S.J.; Jurgens, R.F.; Giorgini, J.D.; Slade, M.A.; Campbell, D.B. Binary Asteroids in the Near-Earth Object Population. Science 2002, 296, 1445–1448. [Google Scholar] [CrossRef]
- Chesley, S.R.; Ostro, S.J.; Vokrouhlický, D.; Čapek, D.; Giorgini, J.D.; Nolan, M.C.; Margot, J.L.; Hine, A.A.; Benner, L.A.M.; Chamberlin, A.B. Direct Detection of the Yarkovsky Effect by Radar Ranging to Asteroid 6489 Golevka. Science 2003, 302, 1739–1742. [Google Scholar] [CrossRef] [PubMed]
- Naidu, S.P.; Benner, L.A.M.; Margot, J.L.; Busch, M.W.; Taylor, P.A. Capabilities of Earth-based radar facilities for near-Earth asteroid observations. Astron. J. 2016, 152, 99. [Google Scholar] [CrossRef]
- Pupillo, G.; Righini, S.; Orosei, R.; Bortolotti, C.; Maccaferri, G.; Roma, M.; Mastrogiuseppe, M.; Pisanu, T.; Schirru, L.; Cicalò, S.; et al. Toward a European Facility for Ground-Based Radar Observations of Near-Earth Objects. Remote Sens. 2023, 16, 38. [Google Scholar] [CrossRef]
- Giorgini, J.; Slade, M.; Silva, A.; Preston, R.; Brozovic, M.; Taylor, P.; Magri, C. Improved impact hazard assessment with existing radar sites and a new 70-m southern hemisphere radar installation. Available online: https://ntrs.nasa.gov/citations/20150009165 (accessed on 12 September 2024).
- Benson, C.; Reynolds, J.; Stacy, N.J.S.; Benner, L.A.M.; Edwards, P.G.; Baines, G.; Boyce, R.; Giorgini, J.D.; Jao, J.S.; Martinez, G.; et al. First Detection of Two Near-Earth Asteroids With a Southern Hemisphere Planetary Radar System. Radio Sci. 2017, 52, 1344–1351. [Google Scholar] [CrossRef]
- Benson, C.; Stacy, N.; Benner, L.A.; Baines, G.; Boyce, R.; Giorgini, J.D.; Jao, J.; Martinez, G.; Slade, M.A.; Teitelbaum, L.P.; et al. Detection of three near-earth asteroids with a southern hemisphere planetary radar system. In Proceedings of the International Astronautical Congress, IAC, Adelaide, Australia, 25–29 September 2017; Volume 5, pp. 2959–2964.
- Abu-Shaban, Z.; Benner, L.A.M.; Edwards, P.; Lazio, J.; Stevens, J.; Boyce, R.; Horiuchi, S.; Slade, M.A.; Benson, C.; Stacy, N.; et al. Asteroids observation from the southern hemisphere using planetary radar. In Proceedings of the 42nd COSPAR Scientific Assembly, Pasadena, CA, USA, 14–22 July 2018; Volume 42, p. B1.1-79-18. [Google Scholar]
- Molyneux, B.; Naidu, S.; Benner, L.A.M.; Edwards, P.; Lazio, J.; Stevens, J.; Horiuchi, S.; Slade, M.A.; Benson, C.; Stacy, N.; et al. Southern Hemisphere Asteroid Radar Program (SHARP): Targets of Opportunity Observations for Near Earth Asteroids, 2019 EA2, 2019 GC6, and 2019 SP3. In Proceedings of the 43rd COSPAR Scientific Assembly, Sydney, Australia, 28 January–4 February 2021; Volume 43, p. 323. [Google Scholar]
- Kruzins, E.; Benner, L.; Boyce, R.; Brown, M.; Coward, D.; Darwell, S.; Edwards, P.; Elizabeth-Glina, L.; Giorgini, J.; Horiuchi, S.; et al. Deep space debris—Detection of potentially hazardous asteroids and objects from the southern hemisphere. Front. Space Technol. 2023, 4, 1162915. [Google Scholar] [CrossRef]
- Lovell, J.E.J.; McCallum, J.N.; Reid, P.B.; McCulloch, P.M.; Baynes, B.E.; Dickey, J.M.; Shabala, S.S.; Watson, C.S.; Titov, O.; Ruddick, R.; et al. The AuScope geodetic VLBI array. J. Geod. 2013, 87, 527–538. [Google Scholar] [CrossRef]
- McCulloch, P.M.; Ellingsen, S.P.; Jauncey, D.L.; Carter, S.J.B.; Cimò, G.; Lovell, J.E.J.; Dodson, R.G. COSMIC: Microarcsecond Resolution with a 30 Meter Radio Telescope. Astron. J. 2005, 129, 2034–2040. [Google Scholar] [CrossRef]
- Reddy, V.; Kelley, M.S.; Benner, L.; Dotson, J.; Erasmus, N.; Farnocchia, D.; Linder, T.; Masiero, J.R.; Thomas, C.; Bauer, J.; et al. 2023 DZ2 Planetary Defense Campaign. Planet. Sci. J. 2024, 5, 141. [Google Scholar] [CrossRef]
- Duev, D.A.; Molera Calvés, G.; Pogrebenko, S.V.; Gurvits, L.I.; Cimó, G.; Bocanegra Bahamon, T. Spacecraft VLBI and Doppler tracking: Algorithms and implementation. Astron. Astrophys. 2012, 541, A43. [Google Scholar] [CrossRef]
- Giorgini, J. On-Site Orbit Determination (OSOD): Past, Present, and Future; Jet Propulsion Laboratory, National Aeronautics and Space Administration: Pasadena, CA, USA, 2019. [Google Scholar]
- Armstrong, J.W. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking. Living Rev. Relativ. 2006, 9, 1. [Google Scholar] [CrossRef]
- Molera Calvés, G.; Pogrebenko, S.V.; Wagner, J.F.; Cimò, G.; Gurvits, L.I.; Bocanegra-Bahamón, T.M.; Duev, D.A.; Nunes, N.V. High spectral resolution multi-tone Spacecraft Doppler tracking software: Algorithms and implementations. Publ. Astron. Soc. Aust. 2021, 38, e065. [Google Scholar] [CrossRef]
- Busch, M.W.; Kulkarni, S.R.; Brisken, W.; Ostro, S.J.; Benner, L.A.M.; Giorgini, J.D.; Nolan, M.C. Determining asteroid spin states using radar speckles. Icarus 2010, 209, 535–541. [Google Scholar] [CrossRef]
- Molera Calvés, G.; Pogrebenko, S.V.; Cimò, G.; Duev, D.A.; Bocanegra-Bahamón, T.M.; Wagner, J.F.; Kallunki, J.; Vicente, P.D.; Kronschnabl, G.; Haas, R.; et al. Observations and analysis of phase scintillation of spacecraft signal on the interplanetary plasma. Astron. Astrophys. 2014, 564, 22925. [Google Scholar] [CrossRef]
- Whitney, A.; Kettenis, M.; Phillips, C.; Sekido, M. VLBI Data Interchange Format (VDIF) (invited). In Proceedings of the 8th International e-VLBI Workshop, Madrid, Spain, 22–26 June 2009; p. 42. [Google Scholar] [CrossRef]
- Ginsburg, A.; Sipőcz, B.M.; Brasseur, C.E.; Cowperthwaite, P.S.; Craig, M.W.; Deil, C.; Guillochon, J.; Guzman, G.; Liedtke, S.; Lian Lim, P.; et al. astroquery: An Astronomical Web-querying Package in Python. Astron. J. 2019, 157, 98. [Google Scholar] [CrossRef]
- Panagiotacopulos, N.D.; Zielenbach, J.W.; Duesing, R.W. An Introduction to JPL’s Orbit Determination Program; Jet Propulsion Lab., California Inst. of Tech.: La Cañada Flintridge, CA, USA, 1974. [Google Scholar]
- Sarneczky, K.; Kowalski, R.A.; Christensen, E.J.; Gibbs, A.R.; Grauer, A.D.; Hill, R.E.; Johnson, J.A.; Larson, S.M.; Sanders, R.J.; Shelly, F.C.; et al. 2014 HK129. Minor Planet Electron. Circ. 2014, 2014, 2014-H75. [Google Scholar]
- Pravec, P.; Wolf, M.; Sarounova, L. Ondrejov Asteroid Photometry Project. 2022. Available online: https://www.asu.cas.cz/~ppravec/neo.htm (accessed on 4 June 2024).
- NASA. Small-Body Database Lookup. 2024. Available online: https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html (accessed on 4 June 2024).
- McNaught, R.H.; Drinkwater, M.J.; Garradd, G.J.; Williams, G.V. 1994 PC1. Minor Planet Electron. Circ. 1994, 1994, Q03. [Google Scholar]
- Franco, L.; Observatory, B.; Marchini, A.; Papini, R.; Iozzi, M.; Scarfi, G.; Mortari, F.; Gabellini, D.; Bacci, P.; Maestripieri, M.; et al. Collaborative asteroid photometry from UAI: 2022 January–March. Minor Planet Bull. 2022, 49, 200–204. [Google Scholar]
- Mainzer, A.; Grav, T.; Masiero, J.; Bauer, J.; Cutri, R.M.; McMillan, R.S.; Nugent, C.R.; Tholen, D.; Walker, R.; Wright, E.L. Physical Parameters of Asteroids Estimated from the WISE 3-Band Data and NEOWISE Post-Cryogenic Survey. Astrophys. J. Lett. 2012, 760, L12. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Nugent, C.R.; Mainzer, A.; Bauer, J.; Cutri, R.M.; Kramer, E.A.; Grav, T.; Masiero, J.; Sonnett, S.; Wright, E.L. NEOWISE Reactivation Mission Year Two: Asteroid Diameters and Albedos. Astron. J. 2016, 152, 63. [Google Scholar] [CrossRef]
- Brozovic, M.; Ostro, S.; Benner, L.; Giorgini, J.; Jurgens, R.; Rosea, R.; Nolan, M.; Hineb, A.; Magri, C.; Scheeres, D.; et al. Radar observations and a physical model of Asteroid 4660 Nereus, a prime space mission target. Icarus 2009, 201, 153–166. [Google Scholar] [CrossRef]
Near-Earth Object | Epoch | Tx DSS Stations | Rx Stations | Range (LD) | Diameter (m) | Detection |
---|---|---|---|---|---|---|
2001 FO32 | 21/03/2021 | 34, 36, 43 | Hb, Ke | 5.2 | 1000 | At |
2021 AF8 | 05/05/2021, 06/05/2021 | 43 | Hb, Ke | 8.8 | 310 | At |
2021 GK1 | 11/05/2021 | 43 | Hb, Ke | 1.5 | 14 | No |
Nereus | 15/12/2021 | 43 | Hb, Ke | 11.4 | 610 | At |
2003 SD220 | 20/12/2021, 21/12/2021 | 43 | Hb, Ke, Cd | 14.4 | 1000 | At |
1994 PC1 / Moon | 18/01/2022 | 43 | Cd | 5.1 | 1600 | At+Ut |
1994 PC1 | 19/01/2022 | 36, 43 | Hb, Ke, Cd | 5.2 | 1600 | At+Ut |
2001 CB21 | 03/03/2022 | 36 | Ke | 12.8 | 680 | At |
2012 UX68 | 17/05/2022, 18/05/2022 | 35 | Hb, Ke | 3.3 | 50 | No |
1989 JA | 28/05/2022 | 36 | Hb, Ke | 10.5 | 990 | At |
2022 LV | 25/06/2022, 26/06/2022 | 14 | Hb, Ke | 2.0 | 22 | At |
2022 RM4 | 01/11/2022, 02/11/2022 | 43 | Hb, Ke | 6.0 | 410 | At |
2005 LW3 | 22/11/2022 | 43 | Hb, Ke | 3.5 | 400 | At |
2015 RN35 | 14/12/2022 | 43 | Hb, Ke | 1.9 | 75 | At |
2014 HK129 | 19/12/2022 | 14 | Ho | 6.7 | 210 | At |
2010 XC15 | 26/12/2022, 27/12/2022 | 34 | Hb, Ke | 2.0 | 180 | At |
2011 AG5 | 02/02/2023, 03/02/2023 | 43 | Hb, Ke | 4.7 | 150 | At |
2005 YY128 | 15/02/2023 | 43 | Hb, Ke | 12.0 | 740 | No |
2012 KY3 | 13/04/2023 | 35 | Hb | 12.8 | 710 | At |
2006 HV5 | 28/04/2023 | 14 | Ho | 9.5 | 450 | At |
1994 XD | 09/06/2023, 10/06/2023 | 34, 14 | Hb, Ho | 9.6 | 490 | No |
2018 UY | 11/07/2023, 12/07/2023 | 43 | Hb, Ke | 7.4 | 250 | At |
2020 UQ3 | 15/07/2023, 16/07/2023 | 34 | Hb, Ke | 4.7 | 58 | At |
2016 LY48 | 16/09/2023, 17/09/2023 | 36, 43 | Hb | 5.0 | 96 | At |
1998 HH49 | 16/10/2023, 17/10/2023 | 36 | Hb, Ke | 3.0 | 190 | At |
2003 UC20 | 04/11/2023 | 43 | Hb | 13.8 | 680 | At+Ut |
Moon | 13/06/2024 | 43 | Cd, Hb, Ke | 1.0 | 3,474,800 | Ut |
2011 UL21 | 26/06/2024, 28/06/2024 | 43 | Cd | 17.3 | 2200 | At |
2024 MK | 26/06/2024, 28/06/2024, 29/06/2024 | 43, 35 | Cd, Hb, Ke, Yg | 0.8 | 140 | At+Ut |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, O.J.; Calvés, G.M.; Horiuchi, S.; Edwards, P.; Kruzins, E.; Giorgini, J.; Stacy, N.; Cole, A.; Phillips, C.; Stevens, J.; et al. Development of Radar and Optical Tracking of Near-Earth Asteroids at the University of Tasmania. Remote Sens. 2025, 17, 352. https://doi.org/10.3390/rs17030352
White OJ, Calvés GM, Horiuchi S, Edwards P, Kruzins E, Giorgini J, Stacy N, Cole A, Phillips C, Stevens J, et al. Development of Radar and Optical Tracking of Near-Earth Asteroids at the University of Tasmania. Remote Sensing. 2025; 17(3):352. https://doi.org/10.3390/rs17030352
Chicago/Turabian StyleWhite, Oliver James, Guifré Molera Calvés, Shinji Horiuchi, Phil Edwards, Ed Kruzins, Jon Giorgini, Nick Stacy, Andrew Cole, Chris Phillips, Jamie Stevens, and et al. 2025. "Development of Radar and Optical Tracking of Near-Earth Asteroids at the University of Tasmania" Remote Sensing 17, no. 3: 352. https://doi.org/10.3390/rs17030352
APA StyleWhite, O. J., Calvés, G. M., Horiuchi, S., Edwards, P., Kruzins, E., Giorgini, J., Stacy, N., Cole, A., Phillips, C., Stevens, J., Benner, L., & Peters, E. (2025). Development of Radar and Optical Tracking of Near-Earth Asteroids at the University of Tasmania. Remote Sensing, 17(3), 352. https://doi.org/10.3390/rs17030352