Monitoring and Comparative Analysis of NO2 and HCHO in Shanghai Using Dual-Azimuth Scanning MAX-DOAS and TROPOMI
Abstract
:1. Introduction
2. Method and Instrument
2.1. MAX-DOAS Measurement
2.1.1. Site and Instrument
2.1.2. Spectral Retrieval
2.2. Sentinel-5P Satellite Data
3. Results and Discussions
3.1. Comparison of Measurements from Two Azimuth Angles
3.2. Diurnal and Weekly Variations of NO2 and HCHO
3.3. Comparison Between MAX-DOAS and TROPOMI
3.3.1. Time Series Comparison
3.3.2. Sampling Distance Sensitivity Analysis
3.3.3. Sampling Time Sensitivity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. Environ. Sci. Pollut. Res. 2018, 25, 8074–8088. [Google Scholar] [CrossRef] [PubMed]
- Lefohn, A.S.; Malley, C.S.; Smith, L.; Wells, B.; Hazucha, M.; Simon, H.; Naik, V.; Mills, G.; Schultz, M.G.; Paoletti, E. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elem. Sci. Anthr. 2018, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Monks, P.S.; Archibald, A.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef]
- Calvert, J.G.; Orlando, J.J.; Stockwell, W.R.; Wallington, T.J. The Mechanisms of Reactions Influencing Atmospheric Ozone; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Li, Y.; Wu, Z.; Ji, Y.; Chen, T.; Li, H.; Gao, R.; Xue, L.; Wang, Y.; Zhao, Y.; Yang, X. Comparison of the ozone formation mechanisms and VOCs apportionment in different ozone pollution episodes in urban Beijing in 2019 and 2020: Insights for ozone pollution control strategies. Sci. Total Environ. 2024, 908, 168332. [Google Scholar] [CrossRef]
- Li, X.; Xie, P.; Li, A.; Xu, J.; Hu, Z.; Ren, H.; Zhong, H.; Ren, B.; Tian, X.; Huang, Y. Variation characteristics and transportation of aerosol, NO2, SO2, and HCHO in coastal cities of eastern China: Dalian, Qingdao, and Shanghai. Remote Sens. Environ. 2021, 13, 892. [Google Scholar] [CrossRef]
- Johnson, M.S.; Souri, A.H.; Philip, S.; Kumar, R.; Naeger, A.; Geddes, J.; Judd, L.; Janz, S.; Sullivan, J. Satellite remote-sensing capability to assess tropospheric-column ratios of formaldehyde and nitrogen dioxide: Case study during the Long Island Sound Tropospheric Ozone Study 2018 (LISTOS 2018) field campaign. Atmos. Meas. Tech. 2023, 16, 2431–2454. [Google Scholar] [CrossRef]
- AbdelSattar, A. Monitoring air pollution using satellite data. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Toronto, ON, Canada, 23–25 October 2019; pp. 772–780. [Google Scholar]
- Zhou, M.; Ni, Q.; Cai, Z.; Langerock, B.; Jiang, J.; Che, K.; Wang, J.; Nan, W.; Liu, Y.; Wang, P. Ground-Based Atmospheric CO2, CH4, and CO Column Measurements at Golmud in the Qinghai-Tibetan Plateau and Comparisons with TROPOMI/S5P Satellite Observations. Adv. Atmos. Sci. 2023, 40, 223–234. [Google Scholar] [CrossRef]
- Levelt, P.F.; Stein Zweers, D.C.; Aben, I.; Bauwens, M.; Borsdorff, T.; De Smedt, I.; Eskes, H.J.; Lerot, C.; Loyola, D.G.; Romahn, F. Air quality impacts of COVID-19 lockdown measures detected from space using high spatial resolution observations of multiple trace gases from Sentinel-5P/TROPOMI. Atmos. Chem. Phys. 2021, 22, 10319–10351. [Google Scholar] [CrossRef]
- Fioletov, V.; McLinden, C.A.; Griffin, D.; Theys, N.; Loyola, D.G.; Hedelt, P.; Krotkov, N.A.; Li, C. Anthropogenic and volcanic point source SO2 emissions derived from TROPOMI on board Sentinel-5 Precursor: First results. Atmos. Chem. Phys. 2020, 20, 5591–5607. [Google Scholar] [CrossRef]
- Wen, J.; Wu, X.; You, D.; Ma, X.; Ma, D.; Wang, J.; Xiao, Q. The main inherent uncertainty sources in trend estimation based on satellite remote sensing data. Theor. Appl. Climatol. 2023, 151, 915–934. [Google Scholar] [CrossRef]
- Ren, B.; Xie, P.; Xu, J.; Li, A.; Qin, M.; Hu, R.; Zhang, T.; Fan, G.; Tian, X.; Zhu, W. Vertical characteristics of NO2 and HCHO, and the ozone formation regimes in Hefei, China. Sci. Total Environ. 2022, 823, 153425. [Google Scholar] [CrossRef] [PubMed]
- Rohi, G.; Ofualagba, G. Autonomous monitoring, analysis, and countering of air pollution using environmental drones. Heliyon 2020, 6, e03252. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Liu, C.; Wang, S.; Xing, C.; Su, W.; Zhang, C.; Xia, C.; Liu, H.; Cai, Z.; Liu, J. Tropospheric NO2, SO2, and HCHO over the East China Sea, using ship-based MAX-DOAS observations and comparison with OMI and OMPS satellite data. Atmos. Chem. Phys. 2018, 18, 15387–15402. [Google Scholar] [CrossRef]
- Jafari, S.M.; Nikoo, M.R.; Dehghani, M.; Alijanian, M. Evaluation of two satellite-based products against ground-based observation for drought analysis in the southern part of Iran. Nat. Hazards 2020, 102, 1249–1267. [Google Scholar] [CrossRef]
- Hönninger, G.; Von Friedeburg, C.; Platt, U. Multi axis differential optical absorption spectroscopy (MAX-DOAS). Atmos. Chem. Phys. 2004, 4, 231–254. [Google Scholar] [CrossRef]
- Ji, X.; Liu, C.; Wang, Y.; Hu, Q.; Lin, H.; Zhao, F.; Xing, C.; Tang, G.; Zhang, J.; Wagner, T. Ozone profiles without blind area retrieved from MAX-DOAS measurements and comprehensive validation with multi-platform observations. Remote Sens. Environ. 2023, 284, 113339. [Google Scholar] [CrossRef]
- Wang, Y.; Dörner, S.; Donner, S.; Böhnke, S.; De Smedt, I.; Dickerson, R.R.; Dong, Z.; He, H.; Li, Z.; Li, Z. Vertical profiles of NO2, SO2, HONO, HCHO, CHOCHO and aerosols derived from MAX-DOAS measurements at a rural site in the central western North China Plain and their relation to emission sources and effects of regional transport. Atmos. Chem. Phys. 2019, 19, 5417–5449. [Google Scholar] [CrossRef]
- Kang, Y.; Tang, G.; Li, Q.; Liu, B.; Cao, J.; Hu, Q.; Wang, Y. Evaluation and evolution of MAX-DOAS-observed vertical NO2 profiles in urban Beijing. Adv. Atmos. Sci. 2021, 38, 1188–1196. [Google Scholar] [CrossRef]
- Tian, X.; Chen, M.; Xie, P.; Xu, J.; Li, A.; Ren, B.; Zhang, T.; Fan, G.; Wang, Z.; Zheng, J. Evaluation of MAX-DOAS Profile Retrievals under Different Vertical Resolutions of Aerosol and NO2 Profiles and Elevation Angles. Remote Sens. 2023, 15, 5431. [Google Scholar] [CrossRef]
- Zhang, H.; Li, A.; Wang, S.; Qin, M.; Hu, Z.; Xu, J. O3 sensitivity and vertical distribution of summertime HCHO, NO2, and SO2 in Shihezi, China. Atmos. Pollut. Res. 2024, 15, 102113. [Google Scholar] [CrossRef]
- Ren, H.; Li, A.; Hu, Z.; Zhang, H.; Xu, J.; Yang, X.; Ma, J.; Wang, S. MAX-DOAS observations of pollutant distribution and transboundary transport in typical regions of China. J. Environ. Sci. 2025, 151, 652–666. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Piters, A.; van Geffen, J.; Tuinder, O.; Stammes, P.; Kinne, S. Shipborne MAX-DOAS measurements for validation of TROPOMI NO2 products. Atmos. Meas. Tech. 2020, 13, 1413–1426. [Google Scholar] [CrossRef]
- Chan, K.L.; Geffen, J.V.; Smedt, I.D.; Alberti, C.; Cheng, Z.B. MAX-DOAS measurements of tropospheric NO2 and HCHO in Munich and the comparison to OMI and TROPOMI satellite observations. Atmos. Meas. Tech. 2020, 13, 4499–4520. [Google Scholar] [CrossRef]
- Iqbal, A.; Ahmad, N.; ud Din, H.M.; Van Roozendael, M.; Anjum, M.S.; Khan, M.Z.A.; Khokhar, M.F. Retrieval of NO2 Columns by Exploiting MAX-DOAS Observations and Comparison with OMI and TROPOMI Data during the Time Period of 2015–2019. Aerosol Air Qual. Res. 2022, 22, 210398. [Google Scholar] [CrossRef]
- Rawat, P.; Naja, M.; Rajwar, M.C.; Irie, H.; Lerot, C.; Kumar, M.; Lal, S. Long-term observations of NO2, SO2, HCHO, and CHOCHO over the Himalayan foothills: Insights from MAX-DOAS, TROPOMI, and GOME-2. Atmos. Environ. 2024, 336, 120746. [Google Scholar] [CrossRef]
- Yombo Phaka, R.; Merlaud, A.; Pinardi, G.; Friedrich, M.M.; Van Roozendael, M.; Müller, J.-F.; Stavrakou, T.; De Smedt, I.; Hendrick, F.; Dimitropoulou, E. Ground-based Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations of NO2 and H2CO at Kinshasa and comparisons with TROPOMI observations. Atmos. Meas. Tech. 2023, 16, 5029–5050. [Google Scholar] [CrossRef]
- Argyrouli, A.; Loyola, D.; Romahn, F.; Lutz, R.; Molina García, V.; Hedelt, P.; Heue, K.-P.; Siddans, R. An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: Application to TROPOMI. Atmos. Meas. Tech. 2024, 17, 6345–6367. [Google Scholar] [CrossRef]
- Van Geffen, J.; Boersma, K.F.; Eskes, H.; Sneep, M.; Ter Linden, M.; Zara, M.; Veefkind, J.P. S5P TROPOMI NO2 slant column retrieval: Method, stability, uncertainties and comparisons with OMI. Atmos. Meas. Tech. 2020, 13, 1315–1335. [Google Scholar] [CrossRef]
- Sun, Y.; Yin, H.; Liu, C.; Zhang, L.; Cheng, Y.; Palm, M.; Notholt, J.; Lu, X.; Vigouroux, C.; Zheng, B. Mapping the drivers of formaldehyde (HCHO) variability from 2015 to 2019 over eastern China: Insights from Fourier transform infrared observation and GEOS-Chem model simulation. Atmos. Chem. Phys. 2021, 21, 6365–6387. [Google Scholar] [CrossRef]
- Kumar, V.; Beirle, S.; Dörner, S.; Mishra, A.K.; Donner, S.; Wang, Y.; Sinha, V.; Wagner, T. Long-term MAX-DOAS measurements of NO2, HCHO, and aerosols and evaluation of corresponding satellite data products over Mohali in the Indo-Gangetic Plain. Atmos. Chem. Phys. 2020, 20, 14183–14235. [Google Scholar] [CrossRef]
- Noxon, J.F. Tropospheric no2. J. Geophys. Res. Oceans 1978, 83, 3051–3057. [Google Scholar] [CrossRef]
- Shao, M.; Zhang, Y.; Zeng, L.; Tang, X.; Zhang, J.; Zhong, L.; Wang, B. Ground-level ozone in the Pearl River Delta and the roles of VOC and NOx in its production. J. Environ. Manag. 2009, 90, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Beirle, S.; Platt, U.; Wenig, M.; Wagner, T. Weekly cycle of NO2 by GOME measurements: A signature of anthropogenic sources. Atmos. Chem. Phys. 2003, 3, 2225–2232. [Google Scholar] [CrossRef]
- Lähde, T.; Niemi, J.V.; Kousa, A.; Rönkkö, T.; Karjalainen, P.; Keskinen, J.; Frey, A.; Hillamo, R.; Pirjola, L. Mobile particle and NOx emission characterization at helsinki downtown: Comparison of different traffic flow areas. Aerosol Air Qual. Res. 2014, 14, 1372–1382. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, Z.; Cao, J.; Zhang, R.; Zhang, L.; Huang, R.-J.; Zheng, C.; Wang, L.; Liu, S.; Xu, H. Variations in PM2. 5, TSP, BC, and trace gases (NO2, SO2, and O3) between haze and non-haze episodes in winter over Xi’an, China. Atmos. Environ. 2015, 112, 64–71. [Google Scholar] [CrossRef]
- Tian, X.; Xie, P.; Xu, J.; Li, A.; Wang, Y.; Qin, M.; Hu, Z. Long-term observations of tropospheric NO2, SO2 and HCHO by MAX-DOAS in Yangtze River Delta area, China. J. Environ. Sci. 2018, 71, 207–221. [Google Scholar] [CrossRef]
- Liu, T.; Lin, Y.; Chen, J.; Chen, G.; Yang, C.; Xu, L.; Li, M.; Fan, X.; Zhang, F.; Hong, Y. Pollution mechanisms and photochemical effects of atmospheric HCHO in a coastal city of southeast China. Sci. Total Environ. 2023, 859, 160210. [Google Scholar] [CrossRef]
- Ialongo, I.; Virta, H.; Eskes, H.; Hovila, J.; Douros, J. Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki. Atmos. Meas. Tech. 2020, 13, 205–218. [Google Scholar] [CrossRef]
- Oomen, G.-M.; Müller, J.-F.; Stavrakou, T.; De Smedt, I.; Blumenstock, T.; Kivi, R.; Makarova, M.; Palm, M.; Röhling, A.; Té, Y. Weekly derived top-down volatile-organic-compound fluxes over Europe from TROPOMI HCHO data from 2018 to 2021. Atmos. Chem. Phys. 2024, 24, 449–474. [Google Scholar] [CrossRef]
- Goldberg, D.L.; Tao, M.; Kerr, G.H.; Ma, S.; Tong, D.Q.; Fiore, A.M.; Dickens, A.F.; Adelman, Z.E.; Anenberg, S.C. Evaluating the spatial patterns of US urban NOx emissions using TROPOMI NO2. Remote Sens. Environ. 2024, 300, 113917. [Google Scholar] [CrossRef]
- Su, W.; Liu, C.; Chan, K.L.; Hu, Q.; Liu, H.; Ji, X.; Zhu, Y.; Liu, T.; Zhang, C.; Chen, Y. An improved TROPOMI tropospheric HCHO retrieval over China. Atmos. Meas. Tech. 2020, 13, 6271–6292. [Google Scholar] [CrossRef]
- Dimitropoulou, E.; Hendrick, F.; Pinardi, G.; Friedrich, M.M.; Merlaud, A.; Tack, F.; De Longueville, H.; Fayt, C.; Hermans, C.; Laffineur, Q. Validation of TROPOMI tropospheric NO2 columns using dual-scan multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Brussels. Atmos. Meas. Tech. 2020, 13, 5165–5191. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Li, A.; Hu, Z.; Shao, N.; Yang, X.; Zhang, H.; Xu, J.; Ma, J. Monitoring and Comparative Analysis of NO2 and HCHO in Shanghai Using Dual-Azimuth Scanning MAX-DOAS and TROPOMI. Remote Sens. 2025, 17, 355. https://doi.org/10.3390/rs17030355
Ren H, Li A, Hu Z, Shao N, Yang X, Zhang H, Xu J, Ma J. Monitoring and Comparative Analysis of NO2 and HCHO in Shanghai Using Dual-Azimuth Scanning MAX-DOAS and TROPOMI. Remote Sensing. 2025; 17(3):355. https://doi.org/10.3390/rs17030355
Chicago/Turabian StyleRen, Hongmei, Ang Li, Zhaokun Hu, Nannan Shao, Xinyan Yang, Hairong Zhang, Jiangman Xu, and Jinji Ma. 2025. "Monitoring and Comparative Analysis of NO2 and HCHO in Shanghai Using Dual-Azimuth Scanning MAX-DOAS and TROPOMI" Remote Sensing 17, no. 3: 355. https://doi.org/10.3390/rs17030355
APA StyleRen, H., Li, A., Hu, Z., Shao, N., Yang, X., Zhang, H., Xu, J., & Ma, J. (2025). Monitoring and Comparative Analysis of NO2 and HCHO in Shanghai Using Dual-Azimuth Scanning MAX-DOAS and TROPOMI. Remote Sensing, 17(3), 355. https://doi.org/10.3390/rs17030355