DBCE-Net: A Novel Deep Learning Framework for Annual Mapping of Coastal Aquaculture Ponds in China with Sentinel-2 Data
Abstract
:1. Introduction
- (1)
- Design a dual-branch DBCE-Net deep learning framework that combines high-resolution small image features with low-resolution large image features, effectively addressing the information loss problem inherent in traditional single-branch networks.
- (2)
- Propose an innovative Multi-scale Dynamic Feature Fusion (DFF) module to effectively integrate complementary information from the main branch and CESB, capturing and utilizing multi-scale features.
- (3)
- Selecting typical aquaculture pond regions in China and applying the small sample to large-scale coastal areas, achieving extensive extraction and mapping of aquaculture ponds across China.
2. Study Areas and Data
2.1. Study Areas
2.2. Data and Preprocessing
3. Method
3.1. Creation of Sample Dataset
3.2. Data Augmentation
3.3. Model Structure
3.3.1. Context-Enhanced Supplementary Branch
3.3.2. Dynamic Feature Fusion Module
3.3.3. Training Parameter Settings and Post-Processing
3.4. Evaluation Metrics
4. Results
4.1. Accuracy Assessment
4.2. Verification of Typicality of Selected Data
4.3. Ablation Experiments
4.4. Comparative Experiments with Single-Branch Structure
5. Discussion
5.1. Comparison with Other Datasets
5.2. Area and Spatial Distribution of Coastal Aquaculture Ponds in China
5.3. Area and Spatial Distribution of Coastal Aquaculture Ponds in China
5.4. Limitations of the Method and Future Directions for Improvement
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 2015, 447, 2–14. [Google Scholar] [CrossRef]
- FAO. Fisheries Department. In The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2022. [Google Scholar]
- Su, S.; Tang, Y.; Chang, B.; Zhu, W.; Chen, Y. Evolution of marine fisheries management in China from 1949 to 2019: How did China get here and where does China go next? Fish Fish. 2020, 21, 435–452. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, M.; Wang, K.; Zhu, K.; Xu, C.; Xie, J.; Xu, J. Aquaculture impacts on china’s marine wild fisheries over the past 30 years. Front. Mar. Sci. 2021, 8, 710124. [Google Scholar] [CrossRef]
- Nagaraju, T.V.; Malegole, S.B.; Chaudhary, B.; Ravindran, G. Assessment of environmental impact of aquaculture ponds in the western delta region of Andhra Pradesh. Sustainability 2022, 14, 13035. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, X.; Zhang, F.; Bempah, G.; Lu, C.; Lv, S.; Zhang, W.; Cui, P. Use of aquaculture ponds by globally endangered red-crowned crane (Grus japonensis) during the wintering period in the Yancheng National Nature Reserve, a Ramsar wetland. Glob. Ecol. Conserv. 2020, 23, e01123. [Google Scholar] [CrossRef]
- Angel, D.; Jokumsen, A.; Lembo, G. Aquaculture production systems and environmental interactions. In Organic Aquaculture: Impacts and Future Developments; Springer: Berlin/Heidelberg, Germany, 2019; pp. 103–118. [Google Scholar]
- Li, X.; Bellerby, R.; Craft, C.; Widney, S.E. Coastal wetland loss, consequences, and challenges for restoration. Anthr. Coasts 2018, 1, 1–15. [Google Scholar] [CrossRef]
- Mavraganis, T.; Constantina, C.; Kolygas, M.; Vidalis, K.; Nathanailides, C. Environmental issues of Aquaculture development. Egypt. J. Aquat. Biol. Fish. 2020, 24, 441–450. [Google Scholar] [CrossRef]
- Salin, K.R.; Arome Ataguba, G. Aquaculture and the environment: Towards sustainability. Sustain. Aquac. 2018, 1–62. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Hou, L.; Qin, Y.; Dong, J.; Doughty, R.B.; Chen, B.; Zhang, X.; Chen, Y.; et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 163, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Binh, N.A.; Hauser, L.T.; Salinero-Delgado, M.; Viet Hoa, P.; Thi Phuong Thao, G.; Verrelst, J. Monitoring mangrove traits through optical Earth observation: Towards spatio-temporal scalability using cloud-based Sentinel-2 continuous time series. ISPRS J. Photogramm. Remote Sens. 2024, 214, 135–152. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, X.; Li, J.; Wang, X.; Chen, B.; Sun, C.; Wang, J.; Tian, P.; Zhang, H. Tracking changes in coastal land cover in the Yellow Sea, East Asia, using Sentinel-1 and Sentinel-2 time-series images and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2023, 196, 429–444. [Google Scholar] [CrossRef]
- Sun, W.; Hou, T.; Chen, C.; Yang, G.; Chen, B.; Meng, X.; Ren, K. Mapping China’s coastal aquaculture ponds expansion with sentinel-2 images during 2017–2021. Int. J. Digit. Earth 2024, 17, 2297943. [Google Scholar] [CrossRef]
- Wang, M.; Mao, D.; Xiao, X.; Song, K.; Jia, M.; Ren, C.; Wang, Z. Interannual changes of coastal aquaculture ponds in China at 10-m spatial resolution during 2016–2021. Remote Sens. Environ. 2023, 284, 113347. [Google Scholar] [CrossRef]
- Ren, C.; Wang, Z.; Zhang, Y.; Zhang, B.; Chen, L.; Xi, Y.; Xiao, X.; Doughty, R.B.; Liu, M.; Jia, M.; et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101902. [Google Scholar] [CrossRef]
- Xia, Z.; Guo, X.; Chen, R. Automatic extraction of aquaculture ponds based on Google Earth Engine. Ocean. Coast. Manag. 2020, 198, 105348. [Google Scholar] [CrossRef]
- Ottinger, M.; Bachofer, F.; Huth, J.; Kuenzer, C. Mapping aquaculture ponds for the coastal zone of Asia with Sentinel-1 and Sentinel-2 time series. Remote Sens. 2021, 14, 153. [Google Scholar] [CrossRef]
- Kolli, M.K.; Opp, C.; Karthe, D.; Pradhan, B. Automatic extraction of large-scale aquaculture encroachment areas using Canny Edge Otsu algorithm in Google Earth Engine—The case study of Kolleru Lake, South India. Geocarto Int. 2022, 37, 11173–11189. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Yang, X.; Huang, C.; Su, F.; Liu, X.; Liu, Y.; Zhang, Y. Global mapping of the landside clustering of aquaculture ponds from dense time-series 10 m Sentinel-2 images on Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103100. [Google Scholar] [CrossRef]
- Gao, L.; Wang, C.; Liu, K.; Chen, S.; Dong, G.; Su, H. Extraction of floating raft aquaculture areas from Sentinel-1 SAR images by a dense residual U-Net model with pre-trained ResNet34 as the encoder. Remote Sens. 2022, 14, 3003. [Google Scholar] [CrossRef]
- Deng, J.; Bai, Y.; Chen, Z.; Shen, T.; Li, C.; Yang, X. A convolutional neural network for coastal aquaculture extraction from high-resolution remote sensing imagery. Sustainability 2023, 15, 5332. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, C.; Liu, Z.; Zhang, Z.; Liang, J.; Chen, H.; Wang, L. Extraction of aquaculture ponds along coastal region using u2-net deep learning model from remote sensing images. Remote Sens. 2022, 14, 4001. [Google Scholar] [CrossRef]
- Ai, B.; Xiao, H.; Xu, H.; Yuan, F.; Ling, M. Coastal aquaculture area extraction based on self-attention mechanism and auxiliary loss. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 2250–2261. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, F.; Zhu, J.; Li, P.; Xie, F.; Zhao, Y. Autonomous Extraction Technology for Aquaculture Ponds in Complex Geological Environments Based on Multispectral Feature Fusion of Medium-Resolution Remote Sensing Imagery. Remote Sens. 2024, 16, 4130. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar] [CrossRef]
- Fan, Q.; Liang, L.; Liang, F.; Sun, X. Research progress on coastline change in China. J. Coast. Res. 2020, 99, 289–295. [Google Scholar] [CrossRef]
- Li, K.; Zhang, L.; Chen, B.; Zuo, J.; Yang, F.; Li, L. Analysis of China’s coastline changes during 1990–2020. Remote Sens. 2023, 15, 981. [Google Scholar] [CrossRef]
- Isbaex, C.; Coelho, A.M. The Potential of Sentinel-2 Satellite Images for Land-Cover/Land-Use and Forest Biomass Estimation: A Review; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef]
- Transon, J.; d’Andrimont, R.; Maugnard, A.; Defourny, P. Survey of hyperspectral earth observation applications from space in the sentinel-2 context. Remote Sens. 2018, 10, 157. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 data for land cover/use mapping: A review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Coluzzi, R.; Imbrenda, V.; Lanfredi, M.; Simoniello, T. A first assessment of the Sentinel-2 Level 1-C cloud mask product to support informed surface analyses. Remote Sens. Environ. 2018, 217, 426–443. [Google Scholar] [CrossRef]
- Liu, C.; Xu, J.; Xu, K.; Yu, J. Mapping large-scale aquaculture ponds in Jiangsu Province, China: An automatic extraction framework based on Sentinel-1 time-series imagery. Aquaculture 2024, 581, 740441. [Google Scholar] [CrossRef]
- Yu, L.; Gong, P. Google Earth as a virtual globe tool for Earth science applications at the global scale: Progress and perspectives. Int. J. Remote Sens. 2012, 33, 3966–3986. [Google Scholar] [CrossRef]
- Ko, H.; Chung, H.; Kang, W.S.; Kim, K.W.; Shin, Y.; Kang, S.J.; Lee, J.H.; Kim, Y.J.; Kim, N.Y.; Jung, H.; et al. COVID-19 pneumonia diagnosis using a simple 2D deep learning framework with a single chest CT image: Model development and validation. J. Med. Internet Res. 2020, 22, e19569. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Lin, H.; Zhang, Z.; Sun, Y.; He, T.; Mueller, J.; Manmatha, R.; et al. Resnest: Split-attention networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 2736–2746. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ross, T.Y.; Dollár, G. Focal loss for dense object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2980–2988. [Google Scholar]
- Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, 14 September 2017; Proceedings 3. Springer: Berlin/Heidelberg, Germany, 2017; pp. 240–248. [Google Scholar]
- Chen, T.Y.; Kuo, F.C.; Merkel, R. On the statistical properties of the f-measure. In Proceedings of the Fourth International Conference onQuality Software, Braunschweig, Germany, 8–9 September 2004; QSIC 2004 Proceedings. IEEE: Piscataway, NJ, USA, 2004; pp. 146–153. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 v200. 2022. Available online: https://pure.iiasa.ac.at/18478 (accessed on 20 January 2024).
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef]
- Li, Y.; Niu, Z. Systematic method for mapping fine-resolution water cover types in China based on time series Sentinel-1 and 2 images. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102656. [Google Scholar] [CrossRef]
- Wang, D.; Mao, D.; Wang, M.; Xiao, X.; Choi, C.Y.; Huang, C.; Wang, Z. Identify and map coastal aquaculture ponds and their drainage and impoundment dynamics. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104246. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Hu, Y.; Zhang, L.; Chen, B.; Zuo, J. An Object-Based Approach to Extract Aquaculture Ponds with 10-Meter Resolution Sentinel-2 Images: A Case Study of Wenchang City in Hainan Province. Remote Sens. 2024, 16, 1217. [Google Scholar] [CrossRef]
- Li, B.; Gong, A.; Chen, Z.; Pan, X.; Li, L.; Li, J.; Bao, W. An object-oriented method for extracting single-object aquaculture ponds from 10 m resolution Sentinel-2 images on Google Earth Engine. Remote Sens. 2023, 15, 856. [Google Scholar] [CrossRef]
- Roy, D.P.; Huang, H.; Houborg, R.; Martins, V.S. A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery. Remote Sens. Environ. 2021, 264, 112586. [Google Scholar] [CrossRef]
- DigitalGlobe. WorldView-3 Data Sheet. 2014. Available online: https://earth.esa.int/eogateway/missions/worldview-3 (accessed on 28 December 2023).
- Guo, Q.; Liu, X.; Jin, S.; Wang, L. A review of high-resolution satellite remote sensing data in China: GF-1 to ZY-3 series. J. Remote Sens. 2017, 21, 658–675. [Google Scholar]
Spectral Range | Band Name | Central Wavelength (nm) |
---|---|---|
Visible | Blue (B2) | 490 |
Green (B3) | 560 | |
Red (B4) | 665 | |
Near-Infrared | NIR (B8) | 842 |
Shortwave Infrared | SWIR1 (B11) | 1610 |
SWIR2 (B12) | 2190 | |
Other Bands | B1 | 443 |
B5 | 705 | |
B6 | 740 | |
B7 | 783 | |
B8A | 865 | |
B9 | 935 | |
B10 | 1375 |
Area | Image Size | Image Data (Date Range) |
---|---|---|
Bohai Bay | 16,516 × 16,636 | 2021-03-01–2021-12-01 |
Hangzhou Bay | 14,978 × 4464 | 2021-03-01–2021-12-01 |
Sanmen Bay | 7436 × 3136 | 2021-03-01–2021-12-01 |
Year | Class | AP | Non-AP | Precision | Recall | F1 Score | OA |
---|---|---|---|---|---|---|---|
2017 | AP | 728 | 68 | 91.5% | 89.7% | 90.5% | 92.7% |
Non-AP | 84 | 1209 | 93.5% | 94.8% | 94.1% | ||
2018 | AP | 745 | 67 | 91.7% | 89.8% | 90.7% | 92.8% |
Non-AP | 85 | 1210 | 93.4% | 94.9% | 94.1% | ||
2019 | AP | 745 | 58 | 92.8% | 89.8% | 91.2% | 93.2% |
Non-AP | 85 | 1220 | 93.5% | 95.5% | 94.5% | ||
2020 | AP | 726 | 49 | 93.7% | 89.9% | 91.7% | 93.7% |
Non-AP | 82 | 1228 | 93.7% | 96.2% | 94.9% | ||
2021 | AP | 773 | 61 | 92.7% | 88.7% | 90.7% | 92.5% |
Non-AP | 98 | 1179 | 92.3% | 95.1% | 93.7% | ||
2022 | AP | 713 | 60 | 92.2% | 89.5% | 90.9% | 93.1% |
Non-AP | 84 | 1217 | 93.5% | 95.3% | 94.4% | ||
2023 | AP | 687 | 55 | 92.6% | 88.6% | 90.6% | 93.1% |
Non-AP | 86 | 1230 | 93.3% | 95.7% | 94.5% |
Type | Province | Class | AP | Non-AP | Precision | Recall | F1 Score | OA |
---|---|---|---|---|---|---|---|---|
With Training | Hebei | AP | 83 | 11 | 93.30% | 88.30% | 90.70% | 92.7% |
Non-AP | 6 | 134 | 92.40% | 95.70% | 94.00% | |||
Shandong | AP | 876 | 103 | 91.10% | 89.50% | 90.20% | 92.3% | |
Non-AP | 86 | 1412 | 93.20% | 94.30% | 93.70% | |||
Zhejiang | AP | 201 | 27 | 91.40% | 88.20% | 89.70% | 95.8% | |
Non-AP | 19 | 842 | 96.90% | 97.80% | 97.30% | |||
Without Training | Liaoning | AP | 1226 | 114 | 97.20% | 91.50% | 94.30% | 92.8% |
Non-AP | 35 | 704 | 86.10% | 95.30% | 90.40% | |||
Jiangsu | AP | 845 | 93 | 90.00% | 90.10% | 90.00% | 89.8% | |
Non-AP | 94 | 807 | 89.70% | 89.60% | 89.60% | |||
Shanghai | AP | 47 | 14 | 88.70% | 77.00% | 82.50% | 90.0% | |
Non-AP | 6 | 134 | 90.50% | 95.70% | 93.10% | |||
Fujian | AP | 311 | 82 | 92.60% | 79.10% | 85.30% | 91.0% | |
Non-AP | 25 | 773 | 90.40% | 96.90% | 93.50% | |||
Taiwan | AP | 315 | 36 | 90.80% | 89.70% | 90.30% | 92.8% | |
Non-AP | 32 | 566 | 94.00% | 94.60% | 94.30% | |||
Guangdong | AP | 921 | 96 | 92.10% | 90.60% | 91.30% | 94.1% | |
Non-AP | 79 | 1876 | 95.10% | 96.00% | 95.50% | |||
Guangxi | AP | 158 | 18 | 92.40% | 89.80% | 91.10% | 93.3% | |
Non-AP | 13 | 274 | 93.80% | 95.50% | 94.60% | |||
Hainan | AP | 125 | 11 | 87.40% | 91.90% | 89.60% | 96.1% | |
Non-AP | 18 | 598 | 98.20% | 97.10% | 97.60% |
Type | Class | AP | Non-AP | Precision | Recall | F1 Score | OA |
---|---|---|---|---|---|---|---|
DBCE-Net (with DFF) | AP | 687 | 55 | 92.6% | 88.6% | 90.6% | 93.1% |
Non-AP | 88 | 1230 | 93.3% | 95.7% | 94.5% | ||
DBCE-Net (without DFF) | AP | 708 | 100 | 87.6% | 91.4% | 89.5% | 91.9% |
Non-AP | 67 | 1185 | 94.6% | 92.2% | 93.4% |
Type | Class | AP | Non-AP | Precision | Recall | F1 Score | OA |
---|---|---|---|---|---|---|---|
DBCE-Net | AP | 687 | 55 | 92.6% | 88.6% | 90.6% | 93.1% |
Non-AP | 88 | 1230 | 93.3% | 95.7% | 94.5% | ||
UNet | AP | 683 | 101 | 87.1% | 88.1% | 87.6% | 90.6% |
Non-AP | 92 | 1184 | 92.8% | 92.1% | 92.5% | ||
U2Net | AP | 674 | 66 | 91.1% | 87.0% | 89.0% | 91.9% |
Non-AP | 101 | 1219 | 92.3% | 94.9% | 93.6% | ||
PSPNet | AP | 624 | 71 | 89.8% | 80.5% | 84.9% | 89.2% |
Non-AP | 151 | 1214 | 88.9% | 94.5% | 91.6% | ||
SegNet | AP | 590 | 115 | 83.7% | 76.1% | 79.7% | 85.4% |
Non-AP | 185 | 1170 | 86.3% | 91.1% | 88.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhao, L.; Zhang, H.; Cao, W. DBCE-Net: A Novel Deep Learning Framework for Annual Mapping of Coastal Aquaculture Ponds in China with Sentinel-2 Data. Remote Sens. 2025, 17, 362. https://doi.org/10.3390/rs17030362
Li Y, Zhao L, Zhang H, Cao W. DBCE-Net: A Novel Deep Learning Framework for Annual Mapping of Coastal Aquaculture Ponds in China with Sentinel-2 Data. Remote Sensing. 2025; 17(3):362. https://doi.org/10.3390/rs17030362
Chicago/Turabian StyleLi, Yin, Liaoying Zhao, Huaguo Zhang, and Wenting Cao. 2025. "DBCE-Net: A Novel Deep Learning Framework for Annual Mapping of Coastal Aquaculture Ponds in China with Sentinel-2 Data" Remote Sensing 17, no. 3: 362. https://doi.org/10.3390/rs17030362
APA StyleLi, Y., Zhao, L., Zhang, H., & Cao, W. (2025). DBCE-Net: A Novel Deep Learning Framework for Annual Mapping of Coastal Aquaculture Ponds in China with Sentinel-2 Data. Remote Sensing, 17(3), 362. https://doi.org/10.3390/rs17030362