Meteorological Changes Across Curiosity Rover’s Traverse Using REMS Measurements and Comparisons with Measurements and MRAMS Model Results
Abstract
:1. Introduction
2. Data and Methodology
2.1. REMS Observations
2.2. MRAMS Experiment Design and Configuration
3. Results from REMS Observations and MRAMS
3.1. Interannual Scale Results from REMS Observations
3.2. Comparisons of the Diurnal Cycle Between REMS and MRAMS at Two Locations
4. Analysis and Discussion
4.1. Interannual Scale
4.2. Mesoscale in MY32 and MY36: Comparisons Between REMS and MRAMS
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Patm | MY-31 | MY-32 | MY-33 | MY-34 | MY-35 | MY-36 | MY-37 |
---|---|---|---|---|---|---|---|
min (K) | 688.88 | 688.41 | 686.6 | 670.44 | 664.92 | 654.84 | 684.82 |
Ls (°) | 162.6 | 162.7 | 154.2 | 151.2 | 159.5 | 155.3 | 124.6 |
alt (m) | −4502.36 | −4460.45 | −4431.27 | −4161.67 | −4094.76 | −3956.02 | −3767.88 |
∆Z (m) | 18.947 | 60.855 | 90.041 | 359.641 | 426.551 | 565.291 | 753.431 |
sol | 22 | 691 | 1344 | 2007 | 2691 | 3351 | 3960 |
max (K) | 969.13 | 959.15 | 940.89 | 928.73 | 925.93 | 911.86 | 878.74 |
Ls (°) | 248.3 | 268.6 | 234.4 | 244.4 | 243.3 | 250.9 | 58.0 |
alt (m) | −4520.36 | −4459.77 | −4368.81 | −4150.12 | −4128.68 | −3909.96 | −3826.55 |
∆Z (m) | 0.942 | 61.534 | 152.501 | 371.191 | 392.631 | 611.351 | 694.761 |
sol | 163 | 862 | 1478 | 2163 | 2829 | 3509 | 3815 |
Tatm | MY-31 | MY-32 | MY-33 | MY-34 | MY-35 | MY-36 | MY-37 |
---|---|---|---|---|---|---|---|
min (K) | 190.69 | 185.77 | 186.14 | 192.40 | 191.49 | 192.72 | 191.28 |
Ls (°) | 355.6 | 78.4 | 94.4 | 82.5 | 93.1 | 55.4 | 86.5 |
alt (m) | −4501.17 | −4487.28 | −4423.76 | −4174.66 | −4129.78 | −4067.48 | −3811.28 |
∆Z (m) | 20.137 | 34.025 | 97.551 | 346.651 | 391.531 | 453.831 | 710.031 |
sol | 329 | 535 | 1243 | 1721 | 2422 | 3642 | 3724 |
max (K) | 269.53 | 276.45 | 276.90 | 272.19 | 272.79 | 276.51 | 262.34 |
Ls (°) | 248.9 | 194.6 | 204.7 | 173.0 | 218.2 | 219.4 | 6.7 |
alt (m) | −4520.5 | −4460.94 | −4403.79 | −4188.74 | −4109.67 | −3961.07 | −3862.56 |
∆Z (m) | 0.811 | 60.366 | 117.521 | 332.571 | 411.641 | 560.241 | 658.751 |
sol | 164 | 747 | 1432 | 2047 | 2790 | 3461 | 3706 |
Tsurf | MY-31 | MY-32 | MY-33 | MY-34 | MY-35 | MY-36 | MY-37 |
---|---|---|---|---|---|---|---|
min (K) | 185.63 | 171.74 | 175.30 | 174.07 | 154.02 | 175.12 | 175.33 |
Ls (°) | 348.4 | 85.9 | 104.2 | 16.8 | 32.6 | 332.7 | 15.4 |
alt (m) | −4515.41 | −4487.81 | −4423.52 | −4255.55 | −4154.23 | −3860.34 | −3856.78 |
∆Z (m) | 5.899 | 33.495 | 97.791 | 265.761 | 367.081 | 660.971 | 664.531 |
sol | 329 | 535 | 1243 | 1721 | 2422 | 3642 | 3724 |
max (K) | 287.93 | 288.48 | 289.37 | 286.14 | 289.98 | 293.16 | 275.19 |
Ls (°) | 214.4 | 173.4 | 202.3 | 175.8 | 213.9 | 212.1 | 3.8 |
alt (m) | −4518.23 | −4458.24 | −4407.72 | −4190.05 | −4104.15 | −3965.25 | −3861.09 |
∆Z (m) | 3.076 | 63.068 | 113.591 | 331.261 | 417.161 | 556.061 | 660.221 |
sol | 111 | 711 | 1428 | 2052 | 2783 | 3449 | 3700 |
References
- Hughes, J.; Ross, A.; Vosper, S.; Lock, A.; Jemmett-Smith, B. Assessment of valley cold pools and clouds in a very high-resolution numerical weather prediction model. Geosci. Model Dev. 2015, 8, 3105–3117. [Google Scholar] [CrossRef]
- Rasilla, D.; Martilli, A.; Allende Álvarez, F.; Fernandez, F. Long term evolution of cold air pools (CAPs) over the Madrid basin. Int. J. Climatol. 2022, 43, 2055–2067. [Google Scholar] [CrossRef]
- Bacer, S.; Beaumet, J.; Ménégoz, M.; Gallée, H.; Bouëdec, E.; Staquet, C. Impact of climate change on persistent cold-air pools in an alpine valley during the 21st century. EGU Gen. Assem. 2023. [Google Scholar] [CrossRef]
- Larsen, S.; Jørgensen, H.; Landberg, L.; Tillman, J. Aspects of the atmospheric surface layers on Mars and Earth. Bound. Layer Meteorol. 2002, 105, 451–470. [Google Scholar] [CrossRef]
- Grotzinger, J.P.; Crisp, J.; Vasavada, A.R.; Anderson, R.C.; Baker, C.J.; Barry, R.; Blake, D.F.; Conrad, P.; Edgett, K.S.; Ferdowski, B.; et al. Mars Science Laboratory Mission and Science Investigation. Space Sci. Rev. 2012, 170, 5–56. [Google Scholar] [CrossRef]
- Petrosyan, A.; Galperin, B.; Larsen, S.E.; Lewis, S.R.; Määttänen, A.; Read, P.L.; Rennó, N.; Rogberg, L.P.; Savijärvi, H.; Siili, T.; et al. The Martian atmospheric boundary layer. Rev. Geophys. 2011, 49, RG3005. [Google Scholar] [CrossRef]
- Tillman, J.E. Mars global atmospheric oscillations: Annually synchronized, transient normal-mode oscillations and the triggering of global dust storms. J. Geophys. Res. 1988, 93, 9433–9451. [Google Scholar] [CrossRef]
- Eckert, M. The Boundary Layer Concept. In Turbulence—An Odyssey. History of Physics; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Spiga, A. The planetary boundary layer of Mars. Oxf. Res. Encycl. Planet. Sci. 2024. [Google Scholar]
- Pascal, B. Oeuvres Complètes; Périer to Pascal, 22 September 1648; Seuil: Paris, France, 1960; Volume 2, p. 682. [Google Scholar]
- Howari, F.M.; Sharma, M.; Nazzal, Y.; Barbulescu, A.; Alaydaroos, F.; Xavier, C.M. Atmospheric Topographic Analysis of a Part of Mars. Rom. Rep. Phys. 2021, 73, 805. [Google Scholar]
- Savijärvi, H.; Harri, A.M.; Kemppinen, O. The diurnal water cycle at Curiosity: Role of exchange with the regolith. Icarus 2015, 265, 261–274. [Google Scholar] [CrossRef]
- Dundas, C.M.; Becerra, P.; Byrne, S.; Chojnacki, M.; Daubar, I.J.; Diniega, S.; Hansen, C.J.; Herkenhoff, K.E.; Landis, M.E.; McEwen, A.S.; et al. Active Mars: A Dynamic World. J. Geophys. Res. Planets 2021, 126, e2021JE006876. [Google Scholar] [CrossRef]
- Gómez-Elvira, J.; Armiens, C.; Castañer, L.; Domínguez, M.; Genzer, M.; Gómez, F.; Haberle, R.; Harri, A.M.; Jiménez, V.; Kahanpää, H.; et al. REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover. Space Sci. Rev. 2012, 170, 583–640. [Google Scholar] [CrossRef]
- Gómez-Elvira, J.; Armiens, C.; Carrasco, I.; Genzer, M.; Gómez, F.; Haberle, R.V. Curiosity’s rover environmental monitoring station. Space Sci. Rev. 2014, 170, 583–640. [Google Scholar] [CrossRef]
- Newman, C.; Gómez-Elvira, J.; Marin, M.; Navarro, S.; Torres, J.; Richardson, M.I.; Battalio, J.M.; Guzewich, S.D.; Sullivan, R.; Torre-Juárez, M.; et al. Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) rover’s Bagnold Dunes Campaign and comparison with numerical modeling using MarsWRF. Icarus 2017, 291, 203–231. [Google Scholar] [CrossRef]
- Sebastián, E.; Armiens, C.; Gómez-Elvira, J.; Zorzano, M.P.; Martínez-Frías, J.; Esteban, B.; Ramos, M. The Rover Environmental Monitoring Station Ground Temperature Sensor: A pyrometer for measuring ground temperature on Mars. Sensors 2010, 10, 921–931. [Google Scholar] [CrossRef] [PubMed]
- García Muñoz, R.; Forget, F.; Ochoa, J.L.F. The Rover Environmental Monitoring Station (REMS) for the Mars Science Laboratory (MSL). Space Sci. Rev. 2012, 170, 583–640. [Google Scholar]
- Harri, A.M.; Genzer, M.; Kemppinen, O.; Gomez-Elvira, J.; Haberle, R.; Polkko, J.; Savijärvi, H.; Rennó, N.; Rodriguez-Manfredi, J.A.; Schmidt, W.; et al. Mars Science Laboratory relative humidity observations: Initial results. J. Geophys. Res. Planets 2013, 119, 2132–2147. [Google Scholar] [CrossRef] [PubMed]
- Rafkin, S.; Robert, M.; Haberle, R.; Michaels, T. The Mars Regional Atmospheric Modeling System: Model description and selected simulations. Icarus 2001, 151, 228–256. [Google Scholar] [CrossRef]
- Rafkin, S.; Michaels, T. The Mars Regional Atmospheric Modeling System (MRAMS): Current status and future directions. Atmosphere 2019, 10, 747. [Google Scholar] [CrossRef]
- Pla-Garcia, J.; Rafkin, S.C. The Meteorology of Gale Crater as Determined from Rover Environmental Monitoring Station Observations and Numerical Modeling. Part I: Comparison of Model Simulations with Observations. Icarus 2016, 280, 103–113. [Google Scholar] [CrossRef]
- Torre-Juárez, M.; Piqueux, S.; Kass, D.; Newman, C.; Guzewich, S. Pressure deficit in Gale Crater and a larger northern polar cap after the MY34 global dust storm. J. Geophys. Res. Planets 2024, 129, e2023JE007810. [Google Scholar] [CrossRef]
- Tillman, J.E.; Johnson, N.C.; Guttorp, P.; Percival, D.B. The Martian annual atmospheric pressure cycle: Years without great dust storms. J. Geophys. Res. 1993, 98, 10963–10971. [Google Scholar] [CrossRef]
- Viúdez-Moreiras, D.; Newman, C.E.; De la Torre, M.; Martínez, G.; Guzewich, S.; Lemmon, M.; Pla-García, J.; Smith, M.D.; Harri, A.M.; Genzer, M.; et al. Effects of the MY34/2018 global dust storm as measured by MSL REMS in Gale Crater. J. Geophys. Res. Planets 2019, 124, 1899–1912. [Google Scholar] [CrossRef] [PubMed]
- Martínez, G.M.; Torre-Juárez, M.; Vicente-Retortillo, Á.; Kemppinen, O.; Rennó, N.; Lemmon, M. Análisis de las condiciones ambientales en el cráter Gale en el marco de la misión MSL. Boletín Geofísico 2016, 39, 5–14. [Google Scholar]
- Pál, B.; Kereszturi, Á.; Forget, F.; Smith, M.D. Global Seasonal Variations of the Near-Surface Relative Humidity Levels on Present-Day Mars. Icarus 2019, 333, 481–495. [Google Scholar] [CrossRef]
- Martínez, G.M.; Vicente-Retortillo, A.; Vasavada, A.R.; Newman, C.E.; Fischer, E.; Rennó, N.O.; Savijärvi, H.; de la Torre, M.; Ordóñez-Etxeberria, I.; Lemmon, M.T.; et al. The Surface Energy Budget at Gale Crater During the First 2500 Sols of the Mars Science Laboratory Mission. J. Geophys. Res. Planets 2021, 126, e2020JE006804. [Google Scholar] [CrossRef]
- Schofield, J.T.; Crisp, D.; Barnes, J.R.; Haberle, R.M.; Magalhães, J.A.; Murphy, J.R.; Seiff, A.; Larsen, S. The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) Experiment. Science 1997, 278, 1752–1758. [Google Scholar] [CrossRef]
- Smith, M.D.; Wolff, M.J.; Lemmon, M.T.; Spanovich, N.; Banfield, D.; Budney, C.J.; Clancy, R.T.; Ghosh, A.; Landis, G.A.; Smith, P.; et al. First Atmospheric Science Results from the Mars Exploration Rover’s Mini-TES. Science 2005, 310, 298–303. [Google Scholar] [CrossRef]
- Rafkin, S.C.; Pla-Garcia, J.; Kahre, M.; Gómez-Elvira, J.; Hamilton, V.E.; Marín, M.; Vasavada, A. The Meteorology of Gale Crater as Determined from Rover Environmental Monitoring Station Observations and Numerical Modeling. Part II: Interpretation. Icarus 2016, 280, 114–138. [Google Scholar] [CrossRef]
- Blackburn, D.; Bryson, K.; Chevrier, V.; Roe, L.; Hook, K. Sublimation Kinetics of CO2 Ice on Mars. Planet. Space Sci. 2010, 58, 780–791. [Google Scholar] [CrossRef]
- Thomas, N.; Hansen, C.; Pommerol, A.; Portyankina, G.; Aye, K.M.; Russell, P. Observations of the Surface Effects of the CO2 and H2O Cycles on Mars. In Proceedings of the European Space Agency (ESA) Symposium on Mars Exploration, Valencia, Spain, 9–13 July 2013; pp. 57–70. [Google Scholar]
- Forget, F.; Hourdin, F.; Fournier, R.; Hourdin, C.; Talagrand, O.; Collins, M.; Lewis, S.R.; Read, P.L.; Huot, J.P. Improved General Circulation Models of the Martian Atmosphere from the Surface to Above 80 km. J. Geophys. Res. 1999, 104, 24155–24175. [Google Scholar] [CrossRef]
- Millour, E.; Forget, F.; Spiga, A.; Vals, M.; Zakharov, V.; Montabone, L.; Lefèvre, F.; Montmessin, F.; Chaufray, J.-Y.; López-Valverde, M.A.; et al. The Mars Climate Database (Version 5.3). Sci. Workshop Mars Express ExoMars 2018, 68. [Google Scholar]
- Guzewich, S.D.; Lemmon, M.; Smith, C.L.; Martínez, G.; de Vicente-Retortillo, Á.; Newman, C.E.; Baker, M.; Campbell, C.; Cooper, B.; Gómez-Elvira, J.; et al. Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm. Geophys. Res. Lett. 2019, 46, 71–79. [Google Scholar] [CrossRef]
- Guzewich, S.D.; Fedorova, A.A.; Kahre, M.A.; Toigo, A.D. Studies of the 2018/Mars Year 34 Planet-Encircling Dust Storm. J. Geophys. Res. Planets 2020, 125, e2020JE006700. [Google Scholar] [CrossRef]
- Chen-Chen, H.; Pérez-Hoyos, S.; Sanchez-Lavega, A. Dust Particle Size, Shape, and Optical Depth During the 2018/MY34 Martian Global Dust Storm Retrieved by MSL Curiosity Rover Navigation Cameras. Planet. Space Sci. 2020, 180, 104746. [Google Scholar] [CrossRef]
- Lapotre, M.G.; Ewing, R.C.; Lamb, M.P.; Fischer, W.W.; Grotzinger, J.P.; Rubin, D.M.; Lewis, K.W.; Ballard, M.J.; Day, M.; Gupta, S.; et al. Large Wind Ripples on Mars: A Record of Atmospheric Evolution. Science 2016, 353, 55–58. [Google Scholar] [CrossRef]
- Vasavada, A.; Piqueux, S.; Lewis, K.; Lemmon, M.; Smith, M. Thermophysical Properties along Curiosity’s Traverse in Gale Crater, Mars, Derived from the REMS Ground Temperature Sensor. Icarus 2017, 284, 373–384. [Google Scholar] [CrossRef]
- Gendrin, A.; Mangold, N.; Bibring, J.P.; Langevin, Y.; Gondet, B.; Poulet, F.; Bonello, G.; Quantin, C.; Mustard, J.; Arvidson, R.; et al. Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View. Science 2005, 307, 1587–1591. [Google Scholar] [CrossRef] [PubMed]
- Bakker, W.; Ruitenbeek, F.J.A.; van der Werff, H.; Zegers, T.E.; Oosthoek, J.; Marsh, S.; Meer, F.D. Processing OMEGA/Mars Express Hyperspectral Imagery from Radiance-at-Sensor to Surface Reflectance. Planet. Space Sci. 2013, 90, 1–9. [Google Scholar] [CrossRef]
- Christensen, P.R.; Bandfield, J.L.; Hamilton, V.E.; Ruff, S.W.; Kieffer, H.H.; Titus, T.N.; Malin, M.C.; Morris, R.V.; Lane, M.D.; Clark, R.L.; et al. Mars Global Surveyor Thermal Emission Spectrometer Experiment: Investigation Description and Surface Science Results. J. Geophys. Res. 2001, 106, 23823–23871. [Google Scholar] [CrossRef]
- Montmessin, F.; Forget, F.; Rannou, P.; Cabane, M.; Haberle, R.M. Origin and Role of Water Ice Clouds in the Martian Water Cycle as Inferred from a General Circulation Model. J. Geophys. Res. 2004, 109, E10004. [Google Scholar] [CrossRef]
- Clancy, R.T.; Grossman, A.W.; Wolff, M.J.; James, P.B.; Rudy, D.J.; Billawala, Y.N.; Sandor, B.J.; Lee, S.W.; Muhleman, D.O. Water Vapor Saturation at Low Altitudes Around Mars Aphelion: A Key to Mars Climate? Icarus 1996, 122, 36–62. [Google Scholar] [CrossRef]
- Fedorova, A.A.; Montmessin, F.; Korablev, O.; Luginin, M.; Trokhimovskiy, A.; Belyaev, D.A.; Ignatiev, N.I.; Lefèvre, F.; Alday, J.; Irwin, P.G.; et al. Stormy Water on Mars: The Distribution and Saturation of Atmospheric Water During the Dusty Season. Science 2020, 397, 297–300. [Google Scholar] [CrossRef]
- Maltagliati, L.; Montmessin, F.; Fedorova, A.; Korablev, O.; Forget, F.; Bertaux, J.-L. Evidence of Water Vapor in Excess of Saturation in the Atmosphere of Mars. Science 2011, 333, 1868–1871. [Google Scholar] [CrossRef]
- Carrozzo, F.G.; Bellucci, G.; Altieri, F.; D’Aversa, E.; Bibring, J.-P. Mapping of Water Frost and Ice at Low Latitudes on Mars. Icarus 2009, 203, 406–420. [Google Scholar] [CrossRef]
- Poncin, L.; Kleinböhl, A.; Kass, D.; Clancy, R.; Aoki, S.; Vandaele, A. Water Vapor Saturation and Ice Cloud Occurrence in the Atmosphere of Mars. Planet. Space Sci. 2021, 212, 105390. [Google Scholar] [CrossRef]
- Leovy, C.B.; Smith, B.A.; Young, A.T.; Leighton, R.B. Mariner Mars 1969: Atmospheric Results. J. Geophys. Res. 1971, 76, 297–312. [Google Scholar] [CrossRef]
- Smith, I.B.; Spiga, A. Seasonal Variability in Winds in the North Polar Region of Mars. Icarus 2018, 308, 188–196. [Google Scholar] [CrossRef]
- Lemmon, M.T.; Wolff, M.J.; Bell, J.F., III; Smith, M.D.; Cantor, B.A.; Smith, P.H. Dust Aerosol, Clouds, and the Atmospheric Optical Depth Record Over 5 Mars Years of the Mars Exploration Rover Mission. Icarus 2014, 231, 323–343. [Google Scholar] [CrossRef]
- Basu, S.; Wilson, J.; Richardson, M.; Ingersoll, A. Simulation of Spontaneous and Variable Global Dust Storms with the GFDL Mars GCM. J. Geophys. Res. 2006, 111, E09004. [Google Scholar] [CrossRef]
- Zalucha, A. The Effect of Dust on the Martian Hadley Cells in the Presence of Topography at Equinox. Geophys. Res. Lett. 2011, 38, L15203. [Google Scholar]
- Lee, C.; Lawson, W.; Richardson, M.; Heavens, N.; Kleinböhl, A.; Banfield, D.; McCleese, D.; Zurek, R.; Kass, D.; Schofield, J.; et al. Thermal Tides in the Martian Middle Atmosphere as Seen by the Mars Climate Sounder. J. Geophys. Res. 2009, 114, E01007. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Lawson, W.; Richardson, M.; Heavens, N.; McCleese, D.; Banfield, D. Thermal Tides in the Martian Middle Atmosphere. AGU Fall Meet. Abstr. 2008, 2008, P51B-1411. [Google Scholar]
- Guzewich, S.; Newman, C.; Torre-Juarez, M.; Wilson, R.; Lemmon, M.; Smith, M.D.; Kahanpää, H.; Harri, A.M. Atmospheric Tides in Gale Crater, Mars. Icarus 2015, 268, 37–49. [Google Scholar] [CrossRef]
- Richardson, M.I.; Newman, C.E. On the Relationship Between Surface Pressure, Terrain Elevation, and Air Temperature. Part I: The Large Diurnal Surface Pressure Range at Gale Crater, Mars and Its Origin Due to Lateral Hydrostatic Adjustment. Planet. Space Sci. 2018, 164, 132–157. [Google Scholar] [CrossRef]
Sensor | Observed | Variable | Range | Resolution | Accuracy | Ref. |
---|---|---|---|---|---|---|
REMS-GTS | Ground brightness temperature | Tg (K) | 150–300 | 0.1 | ±5 | [17] |
REMS-ATS | Atmospheric temperature | Ta (K) | 150–300 | 0.1 | ±5 | [14] |
REMS-PS | Atmospheric pressure | P (Pa) | 0–1400 | 0.2 | ±3.5 | [18] |
REMS-HS | Relative humidity | RH (%) | 0–100 | 0.1 | 2% in 0 °C 4% in −40 °C 8% in −70 °C | [19] |
Ls | Season | sol | MSLelev | MRAMSelev | α | TI | τ |
---|---|---|---|---|---|---|---|
MY32 | |||||||
Ls 0° | spring equinox | 350 | −4500.205 | −4502.680 | 0.242 | 341.446 | 0.151 |
Ls 90° | summer solstice | 543 | −4487.001 | −4481.850 | 0.239 | 325.240 | 0.083 |
Ls 180° | autumnal equinox | 722 | −4457.023 | −4450.690 | 0.233 | 316.563 | 0.146 |
Ls 270° | summer solstice | 864 | −4459.712 | −4444.020 | 0.231 | 313.173 | 0.194 |
MY36 | |||||||
Ls 0° | spring equinox | 3024 | −4077.100 | −4069.530 | 0.234 | 315.237 | 0.151 |
Ls 90° | summer solstice | 3217 | −4018.350 | −4021.060 | 0.235 | 316.831 | 0.083 |
Ls 180° | autumnal equinox | 3396 | −3964.720 | −3975.500 | 0.231 | 324.870 | 0.147 |
Ls 270° | summer solstice | 3539 | −3897.650 | −3893.420 | 0.235 | 327.084 | 0.194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruíz, M.; Sebastián-Martínez, E.; Rodríguez-Manfredi, J.A.; Pla-García, J.; de la Torre-Juarez, M.; Rafkin, S.C.R. Meteorological Changes Across Curiosity Rover’s Traverse Using REMS Measurements and Comparisons with Measurements and MRAMS Model Results. Remote Sens. 2025, 17, 368. https://doi.org/10.3390/rs17030368
Ruíz M, Sebastián-Martínez E, Rodríguez-Manfredi JA, Pla-García J, de la Torre-Juarez M, Rafkin SCR. Meteorological Changes Across Curiosity Rover’s Traverse Using REMS Measurements and Comparisons with Measurements and MRAMS Model Results. Remote Sensing. 2025; 17(3):368. https://doi.org/10.3390/rs17030368
Chicago/Turabian StyleRuíz, María, Eduardo Sebastián-Martínez, Jose Antonio Rodríguez-Manfredi, Jorge Pla-García, Manuel de la Torre-Juarez, and Scot C. R. Rafkin. 2025. "Meteorological Changes Across Curiosity Rover’s Traverse Using REMS Measurements and Comparisons with Measurements and MRAMS Model Results" Remote Sensing 17, no. 3: 368. https://doi.org/10.3390/rs17030368
APA StyleRuíz, M., Sebastián-Martínez, E., Rodríguez-Manfredi, J. A., Pla-García, J., de la Torre-Juarez, M., & Rafkin, S. C. R. (2025). Meteorological Changes Across Curiosity Rover’s Traverse Using REMS Measurements and Comparisons with Measurements and MRAMS Model Results. Remote Sensing, 17(3), 368. https://doi.org/10.3390/rs17030368