FERDNet: High-Resolution Remote Sensing Road Extraction Network Based on Feature Enhancement of Road Directionality
Abstract
:1. Introduction
- (1)
- We propose a new Multi-angle Feature Enhancement module (MFE) that captures road surface features more effectively through strip convolutions, which are better adapted to road characteristics. This enhances the model’s ability to represent road information in blurred environmental backgrounds and its capability to distinguish non-road features.
- (2)
- We introduce a new High–Low-Level Feature Information Compensation Module (ICM), which enhances and fuses features between two adjacent layers, effectively preserving spatial detail information and improving the model’s ability to extract narrow roads.
- (3)
- We evaluated FERDNet using three distinct satellite road datasets and compared it with alternative methods. The experimental outcomes demonstrate that the proposed FERDNet achieves superior performance.
2. Related Work
2.1. Semantic Segmentation-Based Road Extraction from RS Imagery
2.2. Application of Strip Convolution in Road Extraction
3. Methods
3.1. Overall Architecture
3.2. Encoder
3.3. The MFE Module
3.4. The ICM
3.5. Loss Function
4. Experiments
4.1. Datasets
4.2. Evaluation Metrics
4.3. Training Setup
4.4. Experimental Results
4.4.1. Ablation Experiments
4.4.2. Comparative Experiments
4.4.3. Visualization of Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akhtarmanesh, A.; Abbasi-Moghadam, D.; Sharifi, A.; Yadkouri, M.H.; Tariq, A.; Lu, L. Road extraction from satellite images using attention-assisted UNet. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 1126–1136. [Google Scholar] [CrossRef]
- Luo, H.; Wang, Z.; Du, B.; Dong, Y. A deep cross-modal fusion network for road extraction with high-resolution imagery and lidar data. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4503415. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Tian, B.; Ai, Y.; Cao, D.; Wang, F.-Y. Parallel driving os: A ubiquitous operating system for autonomous driving in cpss. IEEE Trans. Intell. Veh. 2022, 7, 886–895. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Huang, C.; Li, B.; Xing, Y.; Tian, D.; Li, L.; Hu, Z.; Na, X.; Li, Z.; et al. Milestones in autonomous driving and intelligent vehicles: Survey of surveys. IEEE Trans. Intell. Veh. 2022, 8, 1046–1056. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016, 117, 11–28. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten digit recognition with a back-propagation network. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 27–30 November 1989; Volume 2. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Zhou, L.; Zhang, C.; Wu, M. D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 182–186. [Google Scholar]
- Guo, M.-H.; Lu, C.-Z.; Liu, Z.-N.; Cheng, M.-M.; Hu, S.-M. Visual attention network. Comput. Vis. Media 2023, 9, 733–752. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, D.; Yang, Y.; Zhang, J.; Chen, Z. Road extraction from satellite imagery by road context and full-stage feature. IEEE Geosci. Remote Sens. Lett. 2022, 20, 8000405. [Google Scholar] [CrossRef]
- Chen, J.; Yang, L.; Wang, H.; Zhu, J.; Sun, G.; Dai, X.; Deng, M.; Shi, Y. Road extraction from high-resolution remote sensing images via local and global context reasoning. Remote Sens. 2023, 15, 4177. [Google Scholar] [CrossRef]
- Liu, B.; Ding, J.; Zou, J.; Wang, J.; Huang, S. LDANet: A lightweight dynamic addition network for rural road extraction from remote sensing images. Remote Sens. 2023, 15, 1829. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, J.; Lu, X.; Xia, M.; Wang, X.; Liu, Y. RoadNet: Learning to comprehensively analyze road networks in complex urban scenes from high-resolution remotely sensed images. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2043–2056. [Google Scholar]
- Li, X.; Wang, Y.; Zhang, L.; Liu, S.; Mei, J.; Li, Y. Topology-enhanced urban road extraction via a geographic feature-enhanced network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8819–8830. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Y.; Li, W.; Alexandropoulos, G.C.; Yu, J.; Ge, D.; Xiang, W. DDU-Net: Dual-Decoder-U-Net for road extraction using high-resolution remote sensing images. IEEE Trans. Geosci. Remote. 2022, 60, 4412612. [Google Scholar] [CrossRef]
- Dey, M.S.; Chaudhuri, U.; Banerjee, B.; Bhattacharya, A. Dual-path morph-UNet for road and building segmentation from satellite images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 3004005. [Google Scholar] [CrossRef]
- Wang, Y.; Seo, J.; Jeon, T. NL-LinkNet: Toward lighter but more accurate road extraction with nonlocal operations. IEEE Geosci. Remote. Lett. 2021, 19, 3000105. [Google Scholar] [CrossRef]
- Sun, T.; Di, Z.; Che, P.; Liu, C.; Wang, Y. Leveraging crowdsourced gps data for road extraction from aerial imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7509–7518. [Google Scholar]
- Mei, J.; Li, R.-J.; Gao, W.; Cheng, M.-M. Coanet: Connectivity attention network for road extraction from satellite imagery. IEEE Trans. Image Process. 2021, 30, 8540–8552. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, X.; Zhou, D.; Chen, Z. Stripunet: A method for dense road extraction from remote sensing images. IEEE Trans. Intell. Veh. 2024, 1–13. [Google Scholar] [CrossRef]
- Zhao, L.; Ye, L.; Zhang, M.; Jiang, H.; Yang, Z.; Yang, M. DPSDA-Net: Dual-path convolutional neural network with strip dilated attention module for road extraction from high-resolution remote sensing images. Remote Sens. 2023, 15, 3741. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, Z. Remote sensing image road extraction network based on MSPFE-Net. Electronics 2023, 12, 1713. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, Y.; Wang, L.; Zhong, Y.; Guan, Q.; Lu, X.; Zhang, L.; Li, D. A global context-aware and batch-independent network for road extraction from vhr satellite imagery. ISPRS J. Photogramm. Remote. 2021, 175, 353–365. [Google Scholar] [CrossRef]
- Mnih, V. Machine Learning for Aerial Image Labeling; University of Toronto: Toronto, ON, Canada, 2013. [Google Scholar]
- Demir, I.; Koperski, K.; Lindenbaum, D.; Pang, G.; Huang, J.; Basu, S.; Hughes, F.; Raskar, R. DeepGlobe 2018: A challenge to parse the earth through satellite images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 172–181. [Google Scholar]
- Gao, L.; Zhou, Y.; Tian, J.; Cai, W. Ddctnet: A deformable and dynamic cross transformer network for road extraction from high resolution remote sensing images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4407819. [Google Scholar] [CrossRef]
- Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 568–578. [Google Scholar]
- Wang, L.; Li, R.; Zhang, C.; Fang, S.; Duan, C.; Meng, X.; Atkinson, P.M. Unetformer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote Sens. 2022, 190, 196–214. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, Y.; Wang, L.; Han, W.; Feng, R.; Fan, R.; Wang, S. Complex mountain road extraction in high-resolution remote sensing images via a light roadformer and a new benchmark. Remote Sens. 2022, 14, 4729. [Google Scholar] [CrossRef]
Methods | Modules | Precision (%) | Recall (%) | F1 (%) | IoU (%) | |
---|---|---|---|---|---|---|
MFE | ICM | |||||
Baseline 1 | 82.3 | 76.8 | 79.5 | 65.9 | ||
Baseline 2 | 81.2 | 77.3 | 79.2 | 65.6 | ||
Baseline 3 | 82.1 | 76.0 | 78.8 | 65.2 | ||
+ICM | √ | 82.3 | 76.1 | 79.1 | 65.4 | |
+MFE | √ | 81.3 | 79.3 | 80.3 | 67.0 | |
+MFE+ICM | √ | √ | 83.8 | 77.6 | 80.6 | 67.6 |
Method | Precision (%) | Recall (%) | F1 Score (%) | IoU (%) |
---|---|---|---|---|
CR-HR-RoadNet | 78.4 | 77.4 | 77.9 | 63.8 |
DDCTNet | 80.1 | 81.1 | 80.5 | 64.7 |
Deeplabv3+ | 78.4 | 73.8 | 76.0 | 61.3 |
Dlinknet | 84.5 | 75.4 | 79.7 | 66.2 |
PVTTranformer | 83.7 | 72.8 | 77.9 | 63.8 |
UNetFormer | 82.4 | 71.8 | 76.8 | 62.3 |
Ours | 83.8 | 77.7 | 80.6 | 67.6 |
Method | Precision (%) | Recall (%) | F1 Score (%) | IoU (%) |
---|---|---|---|---|
CR-HR-RoadNet | 76.4 | 77.1 | 76.8 | 62.3 |
DDCTNet | 80.3 | 78.1 | 79.1 | 64.3 |
Deeplabv3+ | 85.0 | 79.2 | 82.1 | 69.6 |
Dlinknet | 84.5 | 81.3 | 82.9 | 70.8 |
PVTTranformer | 84.6 | 82.3 | 83.5 | 71.6 |
UNetFormer | 83.5 | 81.3 | 82.4 | 70.1 |
Ours | 83.4 | 84.1 | 84.2 | 72.7 |
Method | Precision (%) | Recall (%) | F1 Score (%) | IoU (%) |
---|---|---|---|---|
CR-HR-RoadNet | 80.3 | 76.1 | 78.2 | 64.2 |
DDCTNet | 80.8 | 73.2 | 76.8 | 62.2 |
Deeplabv3+ | 79.5 | 74.0 | 76.7 | 62.1 |
Dlinknet | 81.6 | 72.1 | 76.6 | 62.0 |
PVTTranformer | 81.9 | 73.9 | 77.7 | 63.6 |
UNetFormer | 80.1 | 75.2 | 77.6 | 63.4 |
Ours | 78.6 | 80.5 | 79.5 | 66.0 |
Method | Param (M) | FLOPs (G) |
---|---|---|
CR-HR-RoadNet | 15.28 | - |
DDCTNet | 63.45 | 128.78 |
Deeplabv3+ | 39.76 | 239.10 |
Dlinknet | 31.56 | 139.52 |
PVTTranformer | 25.47 | 110.15 |
UNetFormer | 11.72 | 46.95 |
Ours | 4.10 | 27.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, B.; Dan, H.; Liu, M.; Luo, X.; Ao, K.; Yang, A.; Wu, J. FERDNet: High-Resolution Remote Sensing Road Extraction Network Based on Feature Enhancement of Road Directionality. Remote Sens. 2025, 17, 376. https://doi.org/10.3390/rs17030376
Zhong B, Dan H, Liu M, Luo X, Ao K, Yang A, Wu J. FERDNet: High-Resolution Remote Sensing Road Extraction Network Based on Feature Enhancement of Road Directionality. Remote Sensing. 2025; 17(3):376. https://doi.org/10.3390/rs17030376
Chicago/Turabian StyleZhong, Bo, Hongfeng Dan, MingHao Liu, Xiaobo Luo, Kai Ao, Aixia Yang, and Junjun Wu. 2025. "FERDNet: High-Resolution Remote Sensing Road Extraction Network Based on Feature Enhancement of Road Directionality" Remote Sensing 17, no. 3: 376. https://doi.org/10.3390/rs17030376
APA StyleZhong, B., Dan, H., Liu, M., Luo, X., Ao, K., Yang, A., & Wu, J. (2025). FERDNet: High-Resolution Remote Sensing Road Extraction Network Based on Feature Enhancement of Road Directionality. Remote Sensing, 17(3), 376. https://doi.org/10.3390/rs17030376