Near-Time Measurement of Aerosol Optical Depth and Black Carbon Concentration at Socheongcho Ocean Research Station: Aerosol Episode Case Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Surface Meteorological Conditions
2.2. Instruments and Data
2.2.1. Ground-Based Studies
- BC and PM2.5
- AERONET AOD
- Gasses
2.2.2. Satellite-Based Studies
- GK-2A/AMI
- Terra and Aqua/Moderate Resolution Imaging Spectroradiometer (MODIS)
- Suomi-Polar-orbiting Partnership (S-NPP)/Visible Infrared Imaging Radiometer Suite (VIIRS)
2.3. Methods
2.3.1. GK-2A AOD Algorithm
- Step 1: Aerosol model assumption
- Step 2: AOD LUT
- Step 3: Surface reflectance estimation
- Ocean
- Land
- Step 4: TOA reflectance calculation for LUTs
- Step 5: Retrieval of AOD
2.3.2. Space and Time Coincidence
2.3.3. Weighted Potential Source Contribution Function (WPSCF) Analysis
3. Results and Discussion
3.1. Performance of the GK-2A/AMI AOD Algorithm
3.1.1. Validation of GK-2A AOD
3.1.2. Seasonal Distribution of AOD
3.2. Seasonal and Monthly Variations in BC Mass Concentration
3.2.1. Seasonal BC Characterization
3.2.2. Analysis of GK-2A AODs and BC Concentrations
3.3. Performance of GK-2A AODs and BC
3.3.1. Comparisons of AOD from Ground-Based and Satellite Observations and BC
3.3.2. Case Study of Seasonal Aerosol Episodes
- Case 1: 12–15 July 2019 (wet summer, monsoon)
- Case 2: October 30–2 November 2019 (fall, post-monsoon season)
- Case 3: 7–10 December 2019 (winter)
3.3.3. Influence of Meteorological Parameters
4. Conclusions
- The GK-2A AOD retrieval algorithm utilized five-channel reflectance (0.47, 0.51, 0.64, 0.86, and 1.61 μm) to calculate path radiances at three visible channels (0.47, 0.64, and 0.86 μm), enabling the selection of appropriate aerosol optical property models and aerosol loading. In particular, it is novel that it included more accurate cloud detection of AMI and bright surface masking via its SWIR and IR channels. Also, it reduced seasonal temperature differences by using the average aerosol background field for 30 days before observation. Therefore, it has the advantage of being able to quickly monitor aerosol movement over the Korean Peninsula at 2 min intervals, with a high resolution of 2 km.
- The GK-2A AOD algorithm demonstrated high accuracy, with a strong correlation (R2 = 0.85, slope = 0.12) when compared to AERONET. Its performance was comparable to that of the MODIS (Terra: R2 = 0.86, slope = 0.78; Aqua: R2 = 0.83, slope = 0.76).
- During the wet summer, the GK-2A AOD values were approximately double (0.63) those observed in winter (0.31) at the SORS. Similarly, the BC mass concentrations ranged from 2 µg·m−3 during the wet summer monsoon to 6 μg m−3 in winter and the post-monsoon season.
- Based on WPSCF model analysis and meteorological data, the AOD and BC concentrations were influenced by long-distance transport from China. Lower BC concentrations during the monsoon season were attributed to wet removal near the surface, while higher concentrations in winter and post-monsoon periods were associated with shallow boundary layers, low wind speeds, and northwesterly/northerly winds facilitating pollutant transport. In contrast, the GK-2A AOD values increased during the monsoon, due to water vapor transport from the southwest, south, and southeast winds. The AOD further increased when air stagnated over the YRD region, including Nanjing and Hangzhou.
- The GK-2A AOD values were primarily influenced by RH, the hygroscopic growth factor, and H2O (water vapor), whereas BC concentrations were increased, along with PM2.5 and CO levels, during fall and winter
- Seasonal analysis revealed that pollutant diffusion was limited during winter, with AOD and BC concentrations increasing due to pollutants lingering near the surface. This was attributed to lower planetary boundary layer heights (PBLHs) and minimal rainfall, allowing aerosols to accumulate. During wet summer, high RH and significant water vapor content promoted hygroscopic aerosol growth, increasing AOD values. In spring, the inflow of large particles, such as yellow dust, enhanced scattering properties, thereby raising AOD values.
- The source of BC concentrations at the SORS was influenced by meteorological factors. Long-range transport via northwesterly winds increased CO levels, while local emissions were linked to elevated PM2.5, PM10, and RH.
- The analysis of the GK-2A AOD and BC aerosol mass concentration data confirmed that the SORS is impacted by combustion products from both local and remote sources. However, extended observation periods are necessary to establish definitive conclusions and fully understand variations in AOD and BC levels. Future studies will expand the network of monitoring sites and conduct long-term continuous measurements for a more comprehensive analysis.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, B.; Chen, L.; Liu, M.; Zhao, J. The effect of aerosols on climate change and society. J. Geosci. Environ. Prot. 2020, 8, 55. [Google Scholar] [CrossRef]
- Berndes, G.; Abt, B.; Asikainen, A.; Cowie, A.; Dale, V.; Egnell, G.; Yeh, S. Forest biomass, carbon neutrality, and climate change mitigation. From Sci. Policy 2016, 3, 1–27. [Google Scholar]
- Andreae, M.O.; Gelencsér, A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 2006, 6, 3131–3148. [Google Scholar] [CrossRef]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Roeckner, E.; Stier, P.; Feichter, J.; Kloster, S.; Esch, M.; Fischer-Bruns, I. Impact of carbonaceous aerosol emissions on regional climate change. Clim. Dyn. 2006, 27, 553–571. [Google Scholar] [CrossRef]
- Lim, S.; Lee, M.; Yoo, H.J. Size distributions, mixing state, and morphology of refractory black carbon in an urban atmosphere of Northeast Asia during summer. Sci. Total Environ. 2023, 856, 158436. [Google Scholar] [CrossRef]
- Li, N.; Chartier, R.; Li, Y.; Liu, Z.; Li, N.; Chang, J.; Xu, C. Measuring and modeling of residential black carbon concentrations in two megacities, China. Build. Environ. 2024, 257, 111558. [Google Scholar] [CrossRef]
- Park, D.; Kang, K.; Na, H.; Lee, J.; Kim, S.; Kim, T. Measurement of black carbon exposure in urban classrooms during rush hours. Atmos. Pollut. Res. 2024, 15, 102233. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Duan, Q.; Kong, X.; Wang, H. Temporal evolution and source apportionment of BC aerosols during autumn in the grassland of Ordos, China. Meteorol. Appl. 2024, 31, e2172. [Google Scholar] [CrossRef]
- Mann, G.W.; Carslaw, K.S.; Reddington, C.L.; Pringle, K.J.; Schulz, M.; Asmi, A.; Henzing, J.S. Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmos. Chem. Phys. 2014, 14, 4679–4713. [Google Scholar] [CrossRef]
- Croft, B.; Lohmann, U.; von Salzen, K. Black carbon ageing in the Canadian Centre for Climate Modelling and Analysis atmospheric general circulation model. Atmos. Chem. Phys. 2005, 5, 1931–1949. [Google Scholar] [CrossRef]
- Lohmann, U.; Feichter, J. Global indirect aerosol effects: A review. Atmos. Chem. Phys. 2005, 5, 715–737. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, F.; Yang, S.; Xia, N.; Ariken, M. Exploring the spatial-temporal characteristics of the aerosol optical depth (AOD) in Central Asia based on the moderate resolution imaging spectroradiometer (MODIS). Environ. Monit. Assess. 2020, 192, 1–15. [Google Scholar] [CrossRef]
- Wang, J.; Christopher, S.A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Res. Lett. 2003, 30, 2095. [Google Scholar] [CrossRef]
- Remer, L.A.; Mattoo, S.; Levy, R.C.; Munchak, L.A. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 1829–1844. [Google Scholar] [CrossRef]
- Huang, J.; Kondragunta, S.; Laszlo, I.; Liu, H.; Remer, L.A.; Zhang, H.; Superczynski, S.; Ciren, P.; Holben, B.N.; Petrenko, M. Validation and expected error estimation of Suomi-NPP VIIRS aerosol optical thickness and Ångström exponent with AERONET. J. Geophys. Res. Atmos. 2016, 121, 7139–7160. [Google Scholar] [CrossRef]
- Liu, H.; Remer, L.A.; Huang, J.; Huang, H.C.; Kondragunta, S.; Laszlo, I.; Oo, M.; Jackson, J.M. Preliminary evaluation of S-NPP VIIRS aerosol optical thickness. J. Geophys. Res. Atmos. 2014, 119, 3942–3962. [Google Scholar] [CrossRef]
- Nakajima, T.; Nakajima, T.Y.; Higurashi, A.; Sano, I.; Takamura, T.; Ishida, H.; Schutgens, N. A study of aerosol and cloud information retrievals from CAI imager on board GOSAT satellite. J. Remote Sens. Soc. Jpn. 2008, 28, 178–189. [Google Scholar] [CrossRef]
- Ahn, S.; Kim, H.S.; Byon, J.Y.; Lim, H. Improving dust aerosol optical depth (DAOD) retrieval from the GEOKOMPSAT-2A (GK-2A) satellite for daytime and nighttime monitoring. Sensors 2024, 24, 1490. [Google Scholar] [CrossRef]
- Song, S.; Kang, Y.; Im, J. Enhanced continuous aerosol optical depth (AOD) estimation using geostationary satellite data: Focusing on nighttime AOD over East Asia. arXiv 2024, arXiv:2405.13334. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.; Lim, H.; Lee, S.; Cho, Y.; Lee, Y.G.; Lee, K. Aerosol optical depth data fusion with Geostationary Korea Multi-Purpose Satellite (GEO-KOMPSAT-2) instruments GEMS, AMI, and GOCI-II: Statistical and deep neural network methods. Atmos. Meas. Tech. 2024, 17, 4317–4335. [Google Scholar] [CrossRef]
- Lee, S.; Choi, J. Daytime cloud detection algorithm based on a multitemporal dataset for GK-2A imagery. Remote Sens. 2021, 13, 3215. [Google Scholar] [CrossRef]
- Jee, J.B.; Lee, K.T.; Lee, K.H.; Zo, I.S. Development of GK-2A AMI aerosol detection algorithm in the East-Asia region using Himawari-8 AHI data. Asia-Pac. J. Atmos. Sci. 2020, 56, 207–223. [Google Scholar] [CrossRef]
- Min, Y.; Jeong, J.Y.; Min, I.K.; Kim, Y.S.; Shim, J.S.; Do, K. Enhancement of wave radar observation data quality at the Socheongcho Ocean Research Station. J. Coast. Res. 2018, 85, 571–575. [Google Scholar] [CrossRef]
- Petzold, A.; Schönlinner, M. Multi-angle absorption photometry—A new method for the measurement of aerosol light absorption and atmospheric black carbon. J. Aerosol Sci. 2004, 35, 421–441. [Google Scholar] [CrossRef]
- Lee, D.; Jeong, J.Y.; Jang, H.K.; Min, J.O.; Kim, M.J.; Youn, S.H.; Lee, T.; Lee, S.H. Comparison of particulate organic carbon to Chlorophyll-a ratio based on the ocean color satellite data at the Ieodo and Socheongcho ocean research stations. J. Coast. Res. 2019, 90, 267–271. [Google Scholar] [CrossRef]
- Petzold, A.; Schloesser, H.; Sheridan, P.J.; Arnott, W.P.; Ogren, J.A.; Virkkula, A. Evaluation of multiangle absorption photometry for measuring aerosol light absorption. Aerosol Sci. Technol. 2005, 39, 40–51. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.A.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Choi, M.; Kim, J.; Lee, J.; Kim, M.; Park, Y.J.; Holben, B.; Eck, T.F.; Li, Z.; Song, C.H. GOCI Yonsei aerosol retrieval version 2 products: An improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia. Atmos. Meas. Tech. 2018, 11, 385–408. [Google Scholar] [CrossRef]
- Ahn, C.; Torres, O.; Jethva, H. Assessment of OMI near-UV aerosol optical depth over land. J. Geophys. Res. Atmos. 2014, 119, 2457–2473. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.N.; Lapyonok, T.; Sinyuk, A.; Mishchenko, M.I.; Yang, P.; Slutsker, I. Non-spherical aerosol retrieval method employing light scattering by spheroids. Geophys. Res. Lett. 2002, 29, 54-1–54-4. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the aerosol robotic network (AERONET) Version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Deaconu, L.T.; Mereuță, A.; Radovici, A.; Ștefănie, H.I.; Botezan, C.; Ajtai, N. Consistency of aerosol optical properties between MODIS satellite retrievals and AERONET over a 14-year period in Central–East Europe. Remote Sens. 2024, 16, 1677. [Google Scholar] [CrossRef]
- Ștefănie, H.I.; Radovici, A.; Mereuță, A.; Arghiuș, V.; Cămărășan, H.; Costin, D.; Ajtai, N. Variation of aerosol optical properties over Cluj-Napoca, Romania, based on 10 years of AERONET data and MODIS MAIAC AOD product. Remote Sens. 2023, 15, 3072. [Google Scholar] [CrossRef]
- Isik, A.G.; Aslanoğlu, S.Y.; Güllü, G. Long-term evaluation of aerosol optical properties in the Levantine region: A comparative analysis of AERONET and Aqua/MODIS. Remote Sens. 2024, 16, 2651. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kambezidis, H.D.; Hatzianastassiou, N.; Kosmopoulos, P.G.; Badarinath, K.V.S. Aerosol climatology: On the discrimination of aerosol types over four AERONET sites. Atmos. Chem. Phys. Discuss. 2007, 7, 6357–6411. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Badarinath, K.V.S.; Kumar Kharol, S.; Rani Sharma, A.; Kambezidis, H.D. Variations in the aerosol optical properties and types over the tropical urban site of Hyderabad, India. J. Geophys. Res. Atmos. 2009, 114, D22. [Google Scholar] [CrossRef]
- Maity, A.; Maithani, S.; Pradhan, M. Cavity ring-down spectroscopy: Recent technological advances and applications. Mol. Laser Spectrosc. 2020, 83–120. [Google Scholar] [CrossRef]
- Ahn, S.; Jee, J.B.; Lee, K.T.; Oh, H.J. Enhanced accuracy of airborne volcanic ash detection using the GEOKOMPSAT-2A satellite. Sensors 2021, 21, 1359. [Google Scholar] [CrossRef]
- Gupta, P.; Levy, R.C.; Mattoo, S.; Remer, L.A.; Munchak, L.A. A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm. Atmos. Meas. Tech. 2016, 9, 3293–3308. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Hsu, N.C.; Herman, J.R.; Tsay, S.C. Radiative impacts from biomass burning in the presence of clouds during boreal spring in Southeast Asia. Geophys. Res. Lett. 2003, 30, 5. [Google Scholar] [CrossRef]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.J. MODIS Collection 6 aerosol products: Comparison between Aqua’s Deep Blue, Dark Target, and “merged” datasets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Jackson, J.M.; Liu, H.; Laszlo, I.; Kondragunta, S.; Remer, L.A.; Huang, J.; Huang, H.C. Suomi-NPP VIIRS aerosol algorithms and data products. J. Geophys. Res. Atmos. 2013, 118, 12673. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, Y.J. Satellite remote sensing of Asian aerosols: A case study of clean, polluted, and Asian dust storm days. Atmos. Meas. Tech. 2010, 3, 1771–1784. [Google Scholar] [CrossRef]
- Adesina, J.A.; Piketh, S.J.; Formenti, P.; Maggs-Kölling, G.; Holben, B.N.; Sorokin, M.G. Aerosol optical properties and direct radiative effect over Gobabeb, Namibia. Clean Air J. 2019, 29, 1–11. [Google Scholar] [CrossRef]
- Tu, Q.; Hao, Z.; Yan, Y.; Tao, B.; Chung, C.; Kim, S. Aerosol optical properties around the East China Seas based on AERONET measurements. Atmosphere 2021, 12, 642. [Google Scholar] [CrossRef]
- Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Am. Meteor. Soc. 1998, 79, 2101–2114. [Google Scholar] [CrossRef]
- Mayer, B.; Kylling, A. The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.; Wong, M.S.; Yoon, J.; Lee, J.; Wu, D.; Chan, P.W.; Nichol, J.E.; Chung, C.Y.; Ou, M.L. Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction. Remote Sens. Environ. 2014, 142, 176–187. [Google Scholar] [CrossRef]
- Koepke, P. Effective reflectance of oceanic whitecaps. Appl. Opt. 1984, 23, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Monahan, E.C.; Muircheartaigh, I. Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr. 1980, 10, 2094–2099. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Measurement of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Am. 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Morel, A. In-water and remote measurements of ocean color. Bound.-Lay. Meteorol. 1980, 18, 177–201. [Google Scholar] [CrossRef]
- Costa, M.J.; Cervino, M.; Cattani, E.; Torricella, F.; Levizzani, V.; Silva, A.M. Aerosol optical thickness and classification: Use of METEOSAT, GOME, and modeled data. In Satellite Remote Sensing of Clouds and the Atmosphere IV; SPIE: Bellingham, WA, USA, 1999; Volume 3867, pp. 268–279. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D. Algorithm for Remote Sensing of Tropospheric Aerosol from MODIS. NASA MODIS Algorithm Theoretical Basis Document; Goddard Space Flight Center: Washington, DC, USA, 1998; Volume 85, pp. 3–68. [Google Scholar]
- Torricella, F.; Cattani, E.; Cervino, M.; Guzzi, R.; Levoni, C. Retrieval of aerosol properties over the ocean using global ozone monitoring experiment measurements: Method and applications to test cases. J. Geophys. Res. Atmos. 1999, 104, 12085–12098. [Google Scholar] [CrossRef]
- McRoberts, R.E. Diagnostic tools for nearest neighbors techniques when used with satellite imagery. Remote Sens. Environ. 2009, 113, 489–499. [Google Scholar] [CrossRef]
- Kang, N.; Deng, F.; Khan, R.; Kumar, K.R.; Hu, K.; Yu, X.; Wang, X.; Devi, N.L. Temporal variations of PM concentrations, and its association with AOD and meteorology observed in Nanjing during the autumn and winter seasons of 2014–2017. J. Atmos. Sol.-Terr. Phys. 2020, 203, 105273. [Google Scholar] [CrossRef]
- Draxler, R.R.; Rolph, G.D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 2010; Volume 25. [Google Scholar]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- You, W.; Zang, Z.; Zhang, L.; Li, Z.; Chen, D.; Zhang, G. Estimating ground-level PM10 concentration in northwestern China using geographically weighted regression based on satellite AOD combined with CALIPSO and MODIS fire count. Remote Sens. Environ. 2015, 168, 276–285. [Google Scholar] [CrossRef]
- Ranjan, R.R.; Joshi, H.P.; Iyer, K.N. Spectral variation of total column aerosol optical depth over Rajkot: A tropical semi-arid Indian station. Aerosol Air Qual. Res. 2007, 7, 33–45. [Google Scholar] [CrossRef]
- Huang, Z.; Cui, F.; Kang, H.; Chen, J.; Xia, C. Characterization and catalytic properties of the CuO/SiO2 catalysts prepared by precipitation-gel method in the hydrogenolysis of glycerol to 1,2-propanediol: Effect of residual sodium. Appl. Catal. A Gen. 2009, 366, 288–298. [Google Scholar] [CrossRef]
- Filonchyk, M.; Yan, H. The characteristics of air pollutants during different seasons in the urban area of Lanzhou, Northwest China. Environ. Earth Sci. 2018, 77, 1–17. [Google Scholar] [CrossRef]
- Shen, L.; Wang, H.; Kong, X.; Zhang, C.; Shi, S.; Zhu, B. Characterization of black carbon aerosol in the Yangtze River Delta, China: Seasonal variation and source apportionment. Atmos. Pollut. Res. 2021, 12, 195–209. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Kondo, Y.; Kajino, M.; Munger, J.W.; Hao, J. Black carbon and its correlation with trace gases at a rural site in Beijing: Top-down constraints from ambient measurements on bottom-up emissions. J. Geophys. Res. Atmos. 2011, 116, D24. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, Q.; Zhao, B.; Liu, X.; Wang, Y.; Jia, B.; Zhang, X. Winter haze over North China Plain from 2009 to 2016: Influence of emission and meteorology. Environ. Pollut. 2018, 242, 1308–1318. [Google Scholar] [CrossRef]
- Rajput, P.; Sarin, M.; Sharma, D.; Singh, D. Characteristics and emission budget of carbonaceous species from post-harvest agricultural-waste burning in source region of the Indo-Gangetic Plain. In Air Quality; Apple Academic Press: Waretown, NJ, USA, 2016; pp. 271–292. [Google Scholar]
- Che, H.; Zhao, H.; Wu, Y.; Xia, X.; Zhu, J.; Dubovik, O.; Estelles, V.; Ma, Y.; Wang, Y.; Wang, H.; et al. Application of aerosol optical properties to estimate aerosol type from ground-based remote sensing observation at urban area of northeastern China. J. Atmos. Sol.-Terr. Phys. 2015, 132, 37–47. [Google Scholar] [CrossRef]
- Cui, S.; Xian, J.; Shen, F.; Zhang, L.; Deng, B.; Zhang, Y.; Ge, X. One-year real-time measurement of black carbon in the rural area of Qingdao, Northeastern China: Seasonal variations, meteorological effects, and the COVID-19 case analysis. Atmosphere 2021, 12, 394. [Google Scholar] [CrossRef]
- Zhu, Y.; Sabaliauskas, K.; Liu, X.; Meng, H.; Gao, H.; Jeong, C.H.; Evans, G.J.; Yao, X. Comparative analysis of new particle formation events in less and severely polluted urban atmosphere. Atmos. Environ. 2014, 98, 655–664. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2022, 59, 590–608. [Google Scholar] [CrossRef]
- Yoon, S.C.; Kim, J. Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia. Atmos. Environ. 2006, 40, 4328–4338. [Google Scholar] [CrossRef]
- Aas, E.C.R. Importance of Meteorology on Dispersion of Air Pollution in the Surface Layer. The Use of Modeled and Observed Meteorology in Dispersion Models. Master’s Thesis, University of Oslo, Oslo, Norway, 2018. [Google Scholar]
- Kant, S.; Panda, J.; Gautam, R. A seasonal analysis of aerosol-cloud-radiation interaction over Indian region during 2000–2017. Atmos. Environ. 2019, 201, 212–222. [Google Scholar] [CrossRef]
- Duan, J.; Mao, J.T. Study on the distribution and variation trends of atmospheric aerosol optical depth over the Yangtze River Delta. Acta Sci. Circumstantiae 2007, 27, 537–543. [Google Scholar] [CrossRef]
- He, Q.; Li, C.; Geng, F.; Yang, H.; Li, P.; Li, T.; Liu, D.; Pei, Z. Aerosol optical properties retrieved from Sun photometer measurements over Shanghai, China. J. Geophys. Res. Atmos. 2012, 117, D16. [Google Scholar] [CrossRef]
- Zhuang, B.; Wang, T.; Liu, J.; Li, S.; Xie, M.; Han, Y.; Chen, P.; Hu, Q.; Yang, X.Q.; Fu, C.; et al. The surface aerosol optical properties in the urban area of Nanjing, west Yangtze River Delta, China. Atmos. Chem. Phys. 2017, 17, 1143–1160. [Google Scholar] [CrossRef]
- Abuelgasim, A.; Bilal, M.; Alfaki, I.A. Spatiotemporal variations and long-term trends analysis of aerosol optical depth over the United Arab Emirates. Remote Sens. Appl. Soc. Environ. 2021, 23, 100532. [Google Scholar] [CrossRef]
- Begum, B.A.; Hossain, A.; Nahar, N.; Markwitz, A.; Hopke, P.K. Organic and black carbon in PM2.5 at an urban site at Dhaka, Bangladesh. Aerosol Air Qual. Res. 2012, 12, 1062–1072. [Google Scholar] [CrossRef]
- Cha, Y.; Lee, S.; Lee, J. Measurement of black carbon concentration and comparison with PM10 and PM2.5 concentrations monitored in Chungcheong province, Korea. Aerosol Air Qual. Res. 2019, 19, 541–547. [Google Scholar] [CrossRef]
- Heo, J.; Antkiewicz, D.S.; Shafer, M.M.; Perkins, D.A.; Sioutas, C.; Schauer, J.J. Assessing the role of chemical components in cellular responses to atmospheric particle matter (PM) through chemical fractionation of PM extracts. Anal. Bioanal. Chem. 2015, 407, 5953–5963. [Google Scholar] [CrossRef]
- Holben, B.N.; Tanré, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F.J.; et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. Atmos. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Rosen, H.; Hansen, A.D.A.; Gundel, L.; Novakov, T. Identification of the optically absorbing component in urban aerosols. Appl. Opt. 1978, 17, 3859–3861. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.R.; Dumka, U.C.; Manchanda, R.K.; Kaskaoutis, D.G.; Sreenivasan, S.; Krishna Moorthy, K.; Suresh Babu, S. Contrasting aerosol characteristics and radiative forcing over Hyderabad, India due to seasonal mesoscale and synoptic-scale processes. Quart. J. R. Meteorol. Soc. 2013, 139, 434–450. [Google Scholar] [CrossRef]
- Tiwari, S.; Kaskaoutis, D.; Soni, V.K.; Dev Attri, S.; Singh, A.K. Aerosol columnar characteristics and their heterogeneous nature over Varanasi, in the central Ganges valley. Environ. Sci. Pollut. Res. 2018, 25, 24726–24745. [Google Scholar] [CrossRef] [PubMed]
Variable | Number of Entries | Entries |
---|---|---|
Wavelength | 7 | 0.47, 0. 51, 0.64, 0.86, 1.37, 1.61, 3.83 µm (considering spectral response function) |
Solar zenith angle | 9 | 0, 10, 20, 30, …, 80° (10 intervals) |
Satellite zenith angle | 17 | 0, 5, 10, 15, …, 80° (5 intervals) |
Relative azimuth angle | 18 | 0, 10, 20, 30, …, 170° (10 intervals) |
AOD | 10 | 0.0, 0.3, 0.6, 0.9, 1.2, 1.5, 2.0, 3.0, 4.0, 5.0 |
AOD model | 6 | ASIA_AEROSOL_AMI_CAT1 ASIA_AEROSOL_AMI_CAT2 ASIA_AEROSOL_AMI_CAT3 ASIA_AEROSOL_AMI_CAT4 ASIA_AEROSOL_AMI_CAT5 ASIA_AEROSOL_AMI_CAT6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, S.; Lee, M.; Kim, H.-S.; Sohn, E.-h.; Jeong, J.-Y. Near-Time Measurement of Aerosol Optical Depth and Black Carbon Concentration at Socheongcho Ocean Research Station: Aerosol Episode Case Analysis. Remote Sens. 2025, 17, 382. https://doi.org/10.3390/rs17030382
Ahn S, Lee M, Kim H-S, Sohn E-h, Jeong J-Y. Near-Time Measurement of Aerosol Optical Depth and Black Carbon Concentration at Socheongcho Ocean Research Station: Aerosol Episode Case Analysis. Remote Sensing. 2025; 17(3):382. https://doi.org/10.3390/rs17030382
Chicago/Turabian StyleAhn, Soi, Meehye Lee, Hyeon-Su Kim, Eun-ha Sohn, and Jin-Yong Jeong. 2025. "Near-Time Measurement of Aerosol Optical Depth and Black Carbon Concentration at Socheongcho Ocean Research Station: Aerosol Episode Case Analysis" Remote Sensing 17, no. 3: 382. https://doi.org/10.3390/rs17030382
APA StyleAhn, S., Lee, M., Kim, H.-S., Sohn, E.-h., & Jeong, J.-Y. (2025). Near-Time Measurement of Aerosol Optical Depth and Black Carbon Concentration at Socheongcho Ocean Research Station: Aerosol Episode Case Analysis. Remote Sensing, 17(3), 382. https://doi.org/10.3390/rs17030382