UAV-Based Phytoforensics: Hyperspectral Image Analysis to Remotely Detect Explosives Using Maize (Zea mays)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Explosives
2.2. Plants
2.3. Hyperspectral Imaging
2.4. Field Measurements
2.5. Statistics
2.6. Machine Learning
3. Results and Discussion
4. Conclusions
5. Future Direction
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rylott, E.L.; Jackson, R.G.; Edwards, J.; Womack, G.L.; Seth-Smith, H.M.B.; Rathbone, D.A.; Strand, S.E.; Bruce, N.C. An Explosive-Degrading Cytochrome P450 Activity and Its Targeted Application for the Phytoremediation of RDX. Nat. Biotechnol. 2006, 24, 216–219. [Google Scholar] [CrossRef]
- Rylott, E.L.; Lorenz, A.; Bruce, N.C. Biodegradation and Biotransformation of Explosives. Curr. Opin. Biotechnol. 2011, 22, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Winfield, L.E.; Rodger, J.H.; D’Surney, S.J. The Responses of Selected Terrestrial Plants to Short (<12 Days) and Long Term (2, 4 and 6 Weeks) Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) Exposure. Part I: Growth and Developmental Effects. Ecotoxicology 2004, 13, 335–347. [Google Scholar] [CrossRef]
- Schoenmuth, B.; Mueller, J.O.; Scharnhorst, T.; Schenke, D.; Büttner, C.; Pestemer, W. Elevated Root Retention of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) in Coniferous Trees. Environ. Sci. Pollut. Res. 2014, 21, 3733–3743. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.R. Explosives Residues Resulting from the Detonation of Common Military Munitions: 2002–2006. 2007. Available online: https://www.semanticscholar.org/paper/Explosives-Residues-Resulting-from-the-Detonation-Walsh/44ae86ab79c99a2585247f8b9e2b84cba1498f28 (accessed on 20 January 2025).
- Rylott, E.L.; Budarina, M.V.; Barker, A.; Lorenz, A.; Strand, S.E.; Bruce, N.C. Engineering Plants for the Phytoremediation of RDX in the Presence of the Co-Contaminating Explosive TNT. New Phytol. 2011, 192, 405–413. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Technical Fact Sheet—Hexahydro-1,3,5-Trinitro1,3,5-Triazine (RDX); Office of Solid Waste And Emergency Response, EPA 505-F-14-004 2017; US Environmental Protection Agency: Washington, DC, USA, 2017; pp. 1–9. [Google Scholar]
- Habib, M.K. Controlled Biological and Biomimetic Systems for Landmine Detection. Biosens. Bioelectron. 2007, 23, 1–18. [Google Scholar] [CrossRef]
- Burken, J.G.; Vroblesky, D.A.; Balouet, J.C. Phytoforensics, Dendrochemistry, and Phytoscreening: New Green Tools for Delineating Contaminants from Past and Present. Environ. Sci. Technol. 2011, 45, 6218–6226. [Google Scholar] [CrossRef]
- Slonecker, T.; Fisher, G.B.; Aiello, D.P.; Haack, B. Visible and Infrared Remote Imaging of Hazardous Waste: A Review. Remote Sens. 2010, 2, 2474–2508. [Google Scholar] [CrossRef]
- Zinnert, J.C.; Via, S.M.; Young, D.R. Distinguishing Natural from Anthropogenic Stress in Plants: Physiology, Fluorescence and Hyperspectral Reflectance. Plant Soil 2013, 366, 133–141. [Google Scholar] [CrossRef]
- Lassalle, G.; Credoz, A.; Hédacq, R.; Fabre, S.; Dubucq, D.; Elger, A. Assessing Soil Contamination Due to Oil and Gas Production Using Vegetation Hyperspectral Reflectance. Environ. Sci. Technol. 2018, 52, 1756–1764. [Google Scholar] [CrossRef]
- Emengini, E.J.; Blackburn, G.A.; Theobald, J.C. Discrimination of Plant Stress Caused by Oil Pollution and Waterlogging Using Hyperspectral and Thermal Remote Sensing. J. Appl. Remote Sens. 2013, 7, 073476. [Google Scholar] [CrossRef]
- Burken, J.G.; Schnoor, J.L. Predictive Relationships for Uptake of Organic Contaminants by Hybrid Poplar Trees. Environ. Sci. Technol. 1998, 32, 3379–3385. [Google Scholar] [CrossRef]
- Panz, K.; Miksch, K. Phytoremediation of Explosives (TNT, RDX, HMX) by Wild-Type and Transgenic Plants. J. Environ. Manag. 2012, 113, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Via, S.M.; Zinnert, J.C. Impacts of Explosive Compounds on Vegetation: A Need for Community Scale Investigations. Environ. Pollut. 2016, 208, 495–505. [Google Scholar] [CrossRef]
- Bagheri, M.; He, X.; Oustriere, N.; Liu, W.; Shi, H.; Limmer, M.A.; Burken, J.G. Investigating Plant Uptake of Organic Contaminants through Transpiration Stream Concentration Factor and Neural Network Models. Sci. Total Environ. 2021, 751, 141418. [Google Scholar] [CrossRef]
- Ghosh, M.; Singh, S.P. A Review on Phytoremediation of Heavy Metals and Utilization of It’s by Products. Asian J. Energy Environ. 2005, 6, 214–231. [Google Scholar]
- Singh, S.N.; Mishra, S. Phytoremediation of TNT and RDX. In Environmental Science and Engineering (Subseries: Environmental Science); Singh, S.N., Ed.; Environmental Science and Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; Volume 112, pp. 371–392. ISBN 978-3-319-01082-3. [Google Scholar]
- Vila, M.; Lorber-Pascal, S.; Laurent, F. Fate of RDX and TNT in Agronomic Plants. Environ. Pollut. 2007, 148, 148–154. [Google Scholar] [CrossRef]
- Burken, J.G.; Shanks, J.V.; Thompson, P.L. Phytoremediation and Plant Metabolism of Explosives and Nitroaromatic Compounds. In Biodegradation of Nitroaromatic Compounds and Explosives; CRC Press: Boca Raton, FL, USA, 2000; pp. 239–275. ISBN 9781420032673. [Google Scholar]
- Karnjanapiboonwong, A.; Mu, R.; Yuan, Y.; Shi, H.; Ma, Y.; Burken, J.G. Plant Tissue Analysis for Explosive Compounds in Phytoremediation and Phytoforensics. J. Environ. Sci. Health Tox Hazard. Subst. Environ. Eng. 2012, 47, 2219–2229. [Google Scholar] [CrossRef]
- Brentner, L.B.; Mukherji, S.T.; Walsh, S.A.; Schnoor, J.L. Localization of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) and 2,4,6-Trinitrotoluene (TNT) in Poplar and Switchgrass Plants Using Phosphor Imager Autoradiography. Environ. Pollut. 2010, 158, 470–475. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.L.; Banwart, W. Concentration-Dependent RDX Uptake and Remediation by Crop Plants. Environ. Sci. Pollut. Res. 2011, 18, 908–917. [Google Scholar] [CrossRef]
- Campbell, S.; Ogoshi, R.; Uehara, G.; Li, Q.X. Trace Analysis of Explosives in Soil: Pressurized Fluid Extraction and Gas and Liquid Chromatography-Mass Spectrometry. J. Chromatogr. Sci. 2003, 41, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Sims, D.A.; Gamon, J.A. Estimation of Vegetation Water Content and Photosynthetic Tissue Area from Spectral Reflectance: A Comparison of Indices Based on Liquid Water and Chlorophyll Absorption Features. Remote Sens. Environ. 2003, 84, 526–537. [Google Scholar] [CrossRef]
- Kim, D.M.; Zhang, H.; Zhou, H.; Du, T.; Wu, Q.; Mockler, T.C.; Berezin, M.Y. Highly Sensitive Image-Derived Indices of Water-Stressed Plants Using Hyperspectral Imaging in SWIR and Histogram Analysis. Sci. Rep. 2015, 5, 15919. [Google Scholar] [CrossRef] [PubMed]
- Best, E.P.H.; Smith, T.; Hagen, F.L.; Dawson, J.O.; Torrey, A.J. Capacities of Candidate Herbaceous Plants for Phytoremediation of Soil-Based TNT and RDX on Ranges. 2007. Available online: https://apps.dtic.mil/sti/tr/pdf/ADA489006.pdf (accessed on 9 June 2024).
- Vila, M.; Mehier, S.; Lorber-Pascal, S.; Laurent, F. Phytotoxicity to and Uptake of RDX by Rice. Environ. Pollut. 2007, 145, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Douglas, T.A.; Walsh, M.E.; Weiss, C.A.; McGrath, C.J.; Trainor, T.P. Desorption and Transformation of Nitroaromatic (TNT) and Nitramine (RDX and HMX) Explosive Residues on Detonated Pure Mineral Phases. Water Air Soil Pollut. 2012, 223, 2189–2200. [Google Scholar] [CrossRef]
- Manley, P.V., II. Plant Functional Trait and Hyperspectral Reflectance Responses to Comp B Exposure: Efficacy of Plants as Landmine Detectors. Master’s Thesis, Virginia Commonwealth University, Richmond, VA, USA, 2016. [Google Scholar]
- Manley, P.V., II; Sagan, V.; Fritschi, F.B.; Burken, J.G. Remote Sensing of Explosives-Induced Stress in Plants: Hyperspectral Imaging Analysis for Remote Detection of Unexploded Threats. Remote Sens. 2019, 11, 1827. [Google Scholar] [CrossRef]
- Hasanpour, K.; Aalami, A.; Hosseini, R.; Naeimi, S. Effect of Drought Stress on Some Morphological and Physiological Traits in Aegilops Tauschii Genotypes. Iran. J. Genet. Plant Breed. 2021, 12, 890–896. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, G. Estimation of Vegetation Water Content Using Hyperspectral Vegetation Indices: A Comparison of Crop Water Indicators in Response to Water Stress Treatments for Summer Maize. BMC Ecol. 2019, 19, 18. [Google Scholar] [CrossRef]
- Via, S.M.; Zinnert, J.C.; Young, D.R. Differential Effects of Two Explosive Compounds on Seed Germination and Seedling Morphology of a Woody Shrub, Morella Cerifera. Ecotoxicology 2015, 24, 194–201. [Google Scholar] [CrossRef]
- Via, S.M.; Zinnert, J.C.; Butler, A.D.; Young, D.R. Comparative Physiological Responses of Morella Cerifera to RDX, TNT, and Composition B Contaminated Soils. Environ. Exp. Bot. 2014, 99, 67–74. [Google Scholar] [CrossRef]
- Ali, A.; Zinnert, J.C.; Muthukumar, B.; Peng, Y.; Chung, S.M.; Stewart, C.N. Physiological and Transcriptional Responses of Baccharis Halimifolia to the Explosive “Composition B” (RDX/TNT) in Amended Soil. Environ. Sci. Pollut. Res. 2014, 21, 8261–8270. [Google Scholar] [CrossRef] [PubMed]
- Zinnert, J.C. Plants as Phytosensors: Physiological Responses of a Woody Plant in Response to RDX Exposure and Potential for Remote Detection. Int. J. Plant Sci. 2012, 173, 1005–1014. [Google Scholar] [CrossRef]
- Panz, K.; Miksch, K.; Sójka, T. Synergetic Toxic Effect of an Explosive Material Mixture in Soil. Bull. Environ. Contam. Toxicol. 2013, 91, 555–559. [Google Scholar] [CrossRef]
- Via, S.M.; Zinnert, J.C.; Young, D.R. Multiple Metrics Quantify and Differentiate Responses of Vegetation to Composition B. Int. J. Phytoremediat. 2017, 19, 56–64. [Google Scholar] [CrossRef]
- Mertens, S.; Verbraeken, L.; Sprenger, H.; Demuynck, K.; Maleux, K.; Cannoot, B.; De Block, J.; Maere, S.; Nelissen, H.; Bonaventure, G.; et al. Proximal Hyperspectral Imaging Detects Diurnal and Drought-Induced Changes in Maize Physiology. Front. Plant Sci. 2021, 12, 640914. [Google Scholar] [CrossRef]
- Price, R.A.; Pennington, J.C.; Larson, S.L.; Neumann, D.; Hayes, C.A. Uptake of RDX and TNT by Agronomic Plants. Soil Sediment Contam. Int. J. 2002, 11, 307–326. [Google Scholar] [CrossRef]
- Carter, G.A.; Knapp, A.K. Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics to Stress and Chlorophyll Concentration. Am. J. Bot. 2001, 88, 677–684. [Google Scholar] [CrossRef]
- Peguero-Pina, J.J.; Morales, F.; Flexas, J.; Gil-Pelegrín, E.; Moya, I. Photochemistry, Remotely Sensed Physiological Reflectance Index and de-Epoxidation State of the Xanthophyll Cycle in Quercus Coccifera under Intense Drought. Oecologia 2008, 156, 1–11. [Google Scholar] [CrossRef]
- Zinnert, J.C.; Nelson, J.D.; Hoffman, A.M. Effects of Salinity on Physiological Responses and the Photochemical Reflectance Index in Two Co-Occurring Coastal Shrubs. Plant Soil 2012, 354, 45–55. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochem. Photobiol. 2001, 74, 38. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy. Photochem. Photobiol. 2002, 75, 272. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Sripada, R.P. Measured and Aerial CIR Photographs Were Obtained for Each Site at V7 or VT Prior to N Application. Significant Grain Yield Responses to N PL and N V7, and N VT Were Observed. Ph.D. Dissertation, North Carolina State University, Raleigh, NC, USA, 2005. [Google Scholar]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote Estimation of Chlorophyll Content in Higher Plant Leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial Color Infrared Photography for Determining Early In-Season Nitrogen Requirements in Corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Crippen, R.E. Calculating the Vegetation Index Faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Broge, N.H.; Schelde, K.; Thomsen, A.; Hasager, C.B.; Jensen, N.O. Airborne Multispectral Data for Quantifying Leaf Area Index, Nitrogen Concentration, and Photosynthetic Efficiency in Agriculture. Remote Sens. Environ. 2002, 81, 179–193. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Datt, B. A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests Using Eucalyptus Leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between Leaf Pigment Content and Spectral Reflectance Across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337. [Google Scholar] [CrossRef]
- Rouse, R.W.H.; Haas, J.A.W.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS (Earth Resources Technology Satellites). In Proceedings of the Goddard Space Flight Center Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973; NASA: Washington, DC, USA, 1974; Volume 1, pp. 309–317. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Gamon, J.A. Assessment of Photosynthetic Radiation-use Efficiency with Spectral Reflectance. New Phytol. 1995, 131, 291–296. [Google Scholar] [CrossRef]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The Photochemical Reflectance Index: An Optical Indicator of Photosynthetic Radiation Use Efficiency across Species, Functional Types, and Nutrient Levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-Destructive Optical Detection of Leaf Senescence and Fruit Ripening. Physiol. Plant 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Curran, P.J.; Windham, W.R.; Gholz, H.L. Exploring the Relationship between Reflectance Red Edge and Chlorophyll Concentration in Slash Pine Leaves. Tree Physiol. 1995, 15, 203–206. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Birth, G.S.; McVey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing Prediction Power and Stability of Broadband and Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy Chlorophyll Density. Remote Sens. Environ. 2000, 76, 156–172. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red Edge Spectral Measurements from Sugar Maple Leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Rumpf, T.; Mahlein, A.K.; Steiner, U.; Oerke, E.C.; Dehne, H.-W.; Plümer, L. Early Detection and Classification of Plant Diseases with Support Vector Machines Based on Hyperspectral Reflectance. Comput. Electron. Agric. 2010, 74, 91–99. [Google Scholar] [CrossRef]
- Souza, A.; Rojas, M.Z.; Yang, Y.; Lee, L.; Hoagland, L. Classifying Cadmium Contaminated Leafy Vegetables Using Hyperspectral Imaging and Machine Learning. Heliyon 2022, 8, e12256. [Google Scholar] [CrossRef]
- Agrawal, A.; Petersen, M.R. Detecting Arsenic Contamination Using Satellite Imagery and Machine Learning. Toxics 2021, 9, 333. [Google Scholar] [CrossRef]
- Lv, J.; Liu, X. Predicting Arsenic Concentration in Rice Plants from Hyperspectral Data Using Random Forests. Adv. Intell. Soft Comput. 2011, 128, 601–606. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Chen, J.; Zhang, Y. An Improved Spectral Reflectance and Derivative Feature Fusion for Hyperspectral Image Classification. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 1696–1699. [Google Scholar] [CrossRef]
- Zagajewski, B.; Tømmervik, H.; Bjerke, J.W.; Raczko, E.; Bochenek, Z.; Klos, A.; Jarocińska, A.; Lavender, S.; Ziólkowski, D. Intraspecific Differences in Spectral Reflectance Curves as Indicators of Reduced Vitality in High-Arctic Plants. Remote Sens. 2017, 9, 1289. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Vila, M.; Lorber-Pascal, S.; Laurent, F. Phytotoxicity to and Uptake of TNT by Rice. Environ. Geochem. Health 2008, 30, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Endo, Y.; Usuki, R.; Kaneda, T. Antioxidant Effects of Chlorophyll and Pheophytin on the Autoxidation of Oils in the Dark. II. The Mechanism of Antioxidative Action of Chlorophyll. J. Am. Oil Chem. Soc. 1985, 62, 1387–1390. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Chao, P.-Y.; Hu, S.-P.; Yang, C.-M. The Antioxidant and Free Radical Scavenging Activities of Chlorophylls and Pheophytins. Food Nutr. Sci. 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Wang, E.; Wink, M. Chlorophyll Enhances Oxidative Stress Tolerance in Caenorhabditis Elegans and Extends Its Lifespan. PeerJ 2016, 4, e1879. [Google Scholar] [CrossRef]
- Just, C.L.; Schnoor, J.L. Phytophotolysis of Hexahydro-1, 3, 5-Trinitro-1, 3, 5-Triazine (RDX) in Leaves of Reed Canary Grass. Environ. Sci. Technol. 2004, 38, 290–295. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Weisz, D.A.; Gross, M.L.; Pakrasi, H.B. The Use of Advanced Mass Spectrometry to Dissect the Life-Cycle of Photosystem II. Front. Plant Sci. 2016, 7, 617. [Google Scholar] [CrossRef]
- Pospíšil, P. Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress. Front. Plant Sci. 2016, 7, 1950. [Google Scholar] [CrossRef]
- Aarti, P.D.; Tanaka, R.; Tanaka, A. Effects of Oxidative Stress on Chlorophyll Biosynthesis in Cucumber (Cucumis Sativus) Cotyledons. Physiol. Plant 2006, 128, 186–197. [Google Scholar] [CrossRef]
- Buschmann, C.; Lichtenthaler, H.K. Correlation of Reflectance and Chlorophyll Fluorescence Signatures of Healthy and Damaged Forest Trees. In Proceedings of the IGARSS 1988 Symposium, Edinburgh, UK, 12–16 September 1988; ESA Publications Division: Noordwijk, The Netherlands, 1988. [Google Scholar]
- Huete, A.R. Remote Sensing for Environmental Monitoring. In Environmental Monitoring and Characterization; Academic Press: Cambridge, MA, USA, 2004; pp. 183–206. [Google Scholar] [CrossRef]
- Carter, G.A. Responses of Leaf Spectral Reflectance to Plant Stress. Am. J. Bot. 1993, 80, 239–243. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, J.; Wang, L.; Rehman, T.U.; Gee, M.T. Elimination of Leaf Angle Impacts on Plant Reflectance Spectra Using Fusion of Hyperspectral Images and 3D Point Clouds. Sensors 2023, 23, 44. [Google Scholar] [CrossRef] [PubMed]
- Lowe, A.; Harrison, N.; French, A.P. Hyperspectral Image Analysis Techniques for the Detection and Classification of the Early Onset of Plant Disease and Stress. Plant Methods 2017, 13, 80. [Google Scholar] [CrossRef] [PubMed]
Index | Related to | Formula | Reference |
---|---|---|---|
Anthocyanin Reflectance Index 1 (ARI1) | Anthocyanin Content | (1/R550) − (1/R700) | Gitelson et al., 2001 [46] |
Anthocyanin Reflectance Index 2 (ARI2) | Anthocyanin Content | R800 [(1/R550) − (1/R700)] | Gitelson et al., 2001 [46] |
Carotenoid Reflectance Index 1 (CRI1) | Carotenoid Content | (1/R510) − (1/R550) | Gitelson et al., 2002 [47] |
Carotenoid Reflectance Index 2 (CRI2) | Carotenoid Content | (1/R510) − (1/R700) | Gitelson et al., 2002 [47] |
Difference Vegetation Index (DVI) | Biomass | RNIR − RRed | Tucker, 1979 [48] |
Enhanced Vegetation Index (EVI) | Biomass | 2.5 [(RNIR − RRed)/(RNIR + 6 × RRed − 7.5 × RBlue − 1)] | Huete et al., 2002 [49] |
Green Chlorophyll Index (GCI) | Chlorophyll content | (RNIR/RGreen) − 1 | Gitelson et al., 2003 [50] |
Green Difference Vegetation Index (GDVI) | Biomass | RNIR − RGreen | Sripada, 2005 [51] |
Green Leaf Index (GLI) | Biomass | [(RGreen − RRed) + (RGreen − RBlue)]/[(2 × RGreen) + RRed + RBlue] | Louhaichi et al., 2001 [52] |
Green Normalized Difference Vegetation Index (GNDVI) | Biomass | (RNIR − RGreen)/(RNIR + RGreen) | Gitelson & Merzlyak, 1997 [53] |
Green Optimized Soil Adjusted Vegetation Index (GOSAVI) | Biomass | (RNIR − RGreen)/(RNIR + RGreen + 0.16) | Sripada, 2005 [51] |
Green Ratio Vegetation Index (GRVI) | Photosynthesis | RNIR/RGreen | Sripada, 2006 [54] |
Green Soil Adjusted Vegetation Index (GSAVI) | Biomass | 1.5(RNIR − RGreen)/(RNIR + RGreen + 0.5) | Sripada, 2005 [51] |
Infrared Percentage Vegetation Index (IPVI) | Biomass | RNIR/(RNIR + RRed) | Crippen, 1990 [55] |
Leaf Area Index (LAI) | Biomass | 3.618 × EVI − 0.118 | Boegh et al., 2002 [56] |
Modified Chlorophyll Absorption in Reflectance Index (MCARI) | Chlorophyll | [(R700 − R670) − 0.2(R700 − R550)] × (R700/R670) | Daughtry et al., 2000 [57] |
MCARI2 | LAI | 1.5 [2.5(R800 − R670) − 1.3(R800 − R550)]/SQRT[(2 × R800 + 1)2 − (6 × R800 − 5 × SQRT(R670)) − 0.5] | Haboudane et al., 2004 [58] |
Modified Red Edge Normalized Difference Vegetation Index (MRENDVI) | Biomass | (R750 − R705)/(R750 + R705 − 2 × R445) | Datt, 1999 [59], Sims & Gamon, 2002 [60] |
Modified Red Edge Simple Ratio (MRESR) | Biomass | (R750 − R445)/(R705 − R445) | Datt, 1999 [60], Sims & Gamon, 2002 [60] |
Modified Triangular Vegetation Index (MTVI) | Biomass | 1.2 [1.2(R800 − R550) − 2.5(R670 − R550)] | Haboudane et al., 2004 [58] |
MTVI2 | LAI | 1.5 [1.2(R800 − R550) − 2.5(R670 − R550)]/SQRT[(2 × R800 + 1)2 − (6 * R800 − 5 * SQRT(R670)) − 0.5] | Haboudane et al., 2004 [58] |
Normalized Difference Vegetation Index (NDVI) | Biomass | (R800 − R670)/(R800 + R670) | Rouse et al., 1973 [61] |
Optimized Soil Adjusted Vegetation Index (OSAVI) | Biomass | (RNIR − RRed)/(RNIR + RRed + 0.16) | Rondeaux et al., 1996 [62] |
Photochemical Reflectance Index (PRI) | (R531 − R570)/(R531 + R570) | Peñuelas et al., 1995 [63], Gamon et al., 1997 [64] | |
Plant Senescence Reflectance Index (PSRI) | Stress | (R680 − R500)/R750 | Merzlyak et al., 1999 [65] |
Renormalized Difference Vegetation Index (RDVI) | Biomass | (RNIR − RRed)/SQRT(RNIR + RRed) | Roujean & Breon, 1995 [66] |
Red Edge Normalized Difference Vegetation Index (RENDVI) | Biomass | (R750 − R705)/(R750 + R705) | Gitelson & Merzlyak, 1994 [67], Sims & Gamon, 2002 [60] |
Red Edge Position Index (REPI) | Stress | Max d/dR690–740 | Curran et al., 1995 [68] |
Soil Adjusted Vegetation Index (SAVI) | Biomass | 1.5(RNIR − RRed)/(RNIR + RGreen + 0.5) | Huete, 1988 [69] |
Simple Ratio (SR) | Biomass | RNIR/RRed | Birth & McVey, 1968 [70] |
Transformed Chlorophyll Absorption Reflectance Index (TCARI) | Chlorophyll content | 3 [(R700 − R670) − 0.2(R700 − R550)(R700/R670)] | Haboudane et al., 2004 [58] |
Triangular Vegetation Index (TVI) | LAI | [120(R750 − R550) − 200(R670 − R550)]/2 | Broge & Leblanc, 2000 [71] |
Vogelmann Red Edge Index 1 (VREI1) | Stress | R740/R720 | Vogelmann et al., 1993 [72] |
Vogelmann Red Edge Index 2 (VREI2) | Stress | (R734 − R747)/(R715 − R726) | Vogelmann et al., 1993 [72] |
n | Control | Drought | RDX250 | RDX500 |
---|---|---|---|---|
P0688 | 908 | 856 | 349 | 641 |
P2088 | 534 | 467 | 446 | 409 |
Model | Parameters |
---|---|
SVM | Cross-validation: method = “repeatedcv”, number = 10, repeats = 3, sampling = “down”; Training: method = “svmPoly”, metric = “Accuracy” |
RF | Cross-validation: method = “cv”, number = 2, verboseIter = TRUE, returnResamp = “all”, classProbs = TRUE, summaryFunction = multiClassSummary, sampling = “down”; Training: method = “rf”, tuneLength = 2, metric = “Accuracy”, type = “Classification” |
LDA | Cross-validation: method = “repeatedcv”, number = 10, repeats = 3, sampling = “down”; Training: method = “lda” |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manley, P.V., II; Via, S.M.; Burken, J.G. UAV-Based Phytoforensics: Hyperspectral Image Analysis to Remotely Detect Explosives Using Maize (Zea mays). Remote Sens. 2025, 17, 385. https://doi.org/10.3390/rs17030385
Manley PV II, Via SM, Burken JG. UAV-Based Phytoforensics: Hyperspectral Image Analysis to Remotely Detect Explosives Using Maize (Zea mays). Remote Sensing. 2025; 17(3):385. https://doi.org/10.3390/rs17030385
Chicago/Turabian StyleManley, Paul V., II, Stephen M. Via, and Joel G. Burken. 2025. "UAV-Based Phytoforensics: Hyperspectral Image Analysis to Remotely Detect Explosives Using Maize (Zea mays)" Remote Sensing 17, no. 3: 385. https://doi.org/10.3390/rs17030385
APA StyleManley, P. V., II, Via, S. M., & Burken, J. G. (2025). UAV-Based Phytoforensics: Hyperspectral Image Analysis to Remotely Detect Explosives Using Maize (Zea mays). Remote Sensing, 17(3), 385. https://doi.org/10.3390/rs17030385