BurgsVO: Burgs-Associated Vertex Offset Encoding Scheme for Detecting Rotated Ships in SAR Images
Abstract
:1. Introduction
- 1.
- We propose a novel two-stage ship detection model in SAR images that begins with the feature extraction module and efficient encoding scheme. Experiments on the RSSDD and RSDD datasets demonstrate that the proposed BurgsVO enhances speed while maintaining accuracy.
- 2.
- We design a second-order differential network equation based on the Burgess equation. By integrating contextual and spatial information, this method compensates for detection data deficiencies, improving feature extraction and enabling more effective ship target detection.
- 3.
- We develop an ADVO encoding scheme, which converts rotated anchors to horizontal anchors, accelerating model convergence and reducing computational burden.
2. Related Work
2.1. Ship Detection Methods Based on OBB
2.2. Neural Partial Differential Equations
2.3. Oriented Bounding Box Encoding Scheme
3. Method
3.1. Burgess Equation Heuristic Module
3.2. ADVO-Based Two-Stage Detector
3.2.1. ORPN
Algorithm 1 ADVO Encoding |
Input: Grounding truth boxes(GTs): |
; |
Anchors:; |
Steps: 1. The actual values obtained from the network—used as ground truth in the regression loss function—represent the ratios of the Grounding Truth (GT) OBB to each level’s anchor : |
; |
2. The ratio of the predicted proposals to the current anchor : |
; |
3. Target outcome: Generate a single oriented proposal represented by ADVO: |
; |
Output: The oriented proposal is represented by the ADVO scheme:. |
Algorithm 2 ADVO Decoding |
Input: Grounding truth boxes (GTs): |
; |
Anchors: ; |
Steps: 1. Calculate the coordinates of the four vertices: |
; |
2. Calculate the similarity factor: |
; |
3. Calculate the other two vertices of the two oriented bounding boxes (OBB1 and OBB2): |
; |
4. Calculate the coordinates of the four vertices of the oriented proposals’ OBB: |
Output: Coordinates of the four vertices of the oriented proposals’ OBB:. |
3.2.2. ORCNN
4. Experiment
4.1. Experimental Settings
4.1.1. Dataset
4.1.2. Experimental Details
4.2. Comparison of Representational Methods
4.2.1. Specific Comparison and Analysis
4.2.2. Visual Results
5. Discussion
5.1. Ablation Study
5.2. Speed and Complexity Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, H.; Zhang, B.; Wang, Y.; Cui, Z.; Chen, L. SAR-to-Optical Image Translating Through Generate-Validate Adversarial Networks. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Duan, C.; Hu, W.; Du, X. SAR image based geometrical feature extraction of ships. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 2547–2550. [Google Scholar]
- Wang, Y.; Liu, H. A hierarchical ship detection scheme for high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4173–4184. [Google Scholar] [CrossRef]
- Xing, X.; Chen, Z.; Zou, H.; Zhou, S. A fast algorithm based on two-stage CFAR for detecting ships in SAR images. In Proceedings of the 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, China, 26–30 October 2009; pp. 506–509. [Google Scholar]
- Leng, X.; Ji, K.; Yang, K.; Zou, H. A bilateral CFAR algorithm for ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1536–1540. [Google Scholar] [CrossRef]
- Xu, C.; Su, H.; Li, J.; Liu, Y.; Yao, L.; Gao, L.; Yan, W.; Wang, T. RSDD-SAR: Rotated ship detection dataset in SAR images. J. Radar 2022, 11, 581–599. [Google Scholar]
- Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved faster R-CNN. In Proceedings of the 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 13–14 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar] [CrossRef]
- Zhang, H.; Chang, H.; Ma, B.; Wang, N.; Chen, X. Dynamic r-cnn: Towards high quality object detection via dynamic training. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 260–275. [Google Scholar]
- Deng, Z.; Sun, H.; Zhou, S.; Zhao, J. Learning Deep Ship Detector in SAR Images From Scratch. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4021–4039. [Google Scholar] [CrossRef]
- Cui, Z.; Li, Q.; Cao, Z.; Liu, N. Dense attention pyramid networks for multi-scale ship detection in sar images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8983–8997. [Google Scholar] [CrossRef]
- Wang, S.; Cai, Z.; Yuan, J. Automatic SAR Ship Detection Based on Multi-Feature Fusion Network in Spatial and Frequency Domain. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4102111. [Google Scholar]
- Zand, M.; Etemad, A.; Greenspan, M. Oriented Bounding Boxes for Small and Freely Rotated Objects. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Zhu, Y.; Du, J.; Wu, X. Adaptive Period Embedding for Representing Oriented Objects in Aerial Images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7247–7257. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, M.; Wang, Q.; Wang, Y.; Chen, K.; Xia, G.S.; Bai, X. Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Wu, P.; Liu, B.; Huang, Q.; Qu, H.; Metaxas, D. Oriented Object Detection in Aerial Images with Box Boundary-Aware Vectors. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021; pp. 2149–2158. [Google Scholar] [CrossRef]
- Ma, J.; Shao, W.; Ye, H.; Wang, L.; Wang, H.; Zheng, Y.; Xue, X. Arbitrary-Oriented Scene Text Detection via Rotation Proposals. IEEE Trans. Multimed. 2018, 20, 3111–3122. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, W.; Zhu, S.; Yu, W. Toward Arbitrary-Oriented Ship Detection With Rotated Region Proposal and Discrimination Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1745–1749. [Google Scholar] [CrossRef]
- Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Sun, X.; Fu, K. SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8231–8240. [Google Scholar] [CrossRef]
- Wang, A.; Wang, H.; Huang, Z.; Zhao, B.; Li, W. Directional Alignment Instance Knowledge Distillation for Arbitrary-Oriented Object Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Yang, X.; Yan, J.; Liao, W.; Yang, X.; Tang, J.; He, T. SCRDet++: Detecting Small, Cluttered and Rotated Objects via Instance-Level Feature Denoising and Rotation Loss Smoothing. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 2384–2399. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, M.; Sun, G.C.; Li, N. Oriented Gaussian function-based box boundary-aware vectors for oriented ship detection in multiresolution SAR imagery. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Gao, F.; Huo, Y.; Sun, J.; Yu, T.; Hussain, A.; Zhou, H. Ellipse encoding for arbitrary-oriented SAR ship detection based on dynamic key points. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–28. [Google Scholar] [CrossRef]
- Qian, W.; Yang, X.; Peng, S.; Zhang, X.; Yan, J. RSDet++: Point-based modulated loss for more accurate rotated object detection. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 7869–7879. [Google Scholar] [CrossRef]
- He, Y.; Gao, F.; Wang, J.; Hussain, A.; Yang, E.; Zhou, H. Learning polar encodings for arbitrary-oriented ship detection in SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3846–3859. [Google Scholar] [CrossRef]
- Pappas, O.; Achim, A.; Bull, D. Superpixel-Level CFAR Detectors for Ship Detection in SAR Imagery. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1397–1401. [Google Scholar] [CrossRef]
- Gao, F.; Ma, F.; Wang, J.; Sun, J.; Yang, E.; Zhou, H. Visual Saliency Modeling for River Detection in High-Resolution SAR Imagery. IEEE Access 2018, 6, 1000–1014. [Google Scholar] [CrossRef]
- Gao, G.; Ouyang, K.; Luo, Y.; Liang, S.; Zhou, S. Scheme of Parameter Estimation for Generalized Gamma Distribution and Its Application to Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1812–1832. [Google Scholar] [CrossRef]
- Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation. IEEE Access 2020, 8, 120234–120254. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Ke, X.; Zhan, X.; Shi, J.; Wei, S.; Pan, D.; Li, J.; Su, H.; Zhou, Y.; et al. LS-SSDD-v1. 0: A deep learning dataset dedicated to small ship detection from large-scale Sentinel-1 SAR images. Remote Sens. 2020, 12, 2997. [Google Scholar] [CrossRef]
- Yang, X.; Yan, J. Arbitrary-oriented object detection with circular smooth label. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 677–694. [Google Scholar]
- Yang, X.; Hou, L.; Zhou, Y.; Wang, W.; Yan, J. Dense label encoding for boundary discontinuity free rotation detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15819–15829. [Google Scholar]
- Han, J.; Ding, J.; Xue, N.; Xia, G.S. Redet: A rotation-equivariant detector for aerial object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2786–2795. [Google Scholar]
- Zhao, S.; Liu, Q.; Yu, W.; Lv, J. A Single-Stage Arbitrary-Oriented Detector Based on Multiscale Feature Fusion and Calibration for SAR Ship Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8179–8198. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Zhao, W.; Wang, X.; Li, G.; He, Y. Frequency-Adaptive Learning for SAR Ship Detection in Clutter Scenes. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- An, Q.; Pan, Z.; Liu, L.; You, H. DRBox-v2: An Improved Detector With Rotatable Boxes for Target Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8333–8349. [Google Scholar] [CrossRef]
- Pan, Z.; Yang, R.; Zhang, Z. MSR2N: Multi-stage rotational region based network for arbitrary-oriented ship detection in SAR images. Sensors 2020, 20, 2340. [Google Scholar] [CrossRef]
- Guo, P.; Huang, K.; Xu, Z. Partial Differential Equations is All You Need for Generating Neural Architectures—A Theory for Physical Artificial Intelligence Systems. arXiv 2021, arXiv:2103.08313. [Google Scholar]
- Fang, C.; Zhao, Z.; Zhou, P.; Lin, Z. Feature learning via partial differential equation with applications to face recognition. Pattern Recognit. 2017, 69, 14–25. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, W.; Pock, T. On learning optimized reaction diffusion processes for effective image restoration. In Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA, USA, 7–12 June 2015; pp. 5261–5269. [Google Scholar]
- Qian, W.; Yang, X.; Peng, S.; Guo, Y.; Yan, J. Learning modulated loss for rotated object detection. arXiv 2019, arXiv:1911.08299. [Google Scholar] [CrossRef]
- Xie, X.; Cheng, G.; Wang, J.; Yao, X.; Han, J. Oriented R-CNN for object detection. In Proceedings of the IEEE/CVF international conference on computer vision, Montreal, BC, Canada, 11–17 October 2021; pp. 3520–3529. [Google Scholar]
- Guo, P.; Celik, T.; Liu, N.; Li, H.C. Break through the border restriction of horizontal bounding box for arbitrary-oriented ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Zhang, H.; Wen, S.; Wei, Z.; Chen, Z. High-Resolution Feature Generator for Small Ship Detection in Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5617011. [Google Scholar] [CrossRef]
- Tan, Z.; Jiang, Z.; Yuan, Z.; Zhang, H. OPODet: Toward Open World Potential Oriented Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5645313. [Google Scholar] [CrossRef]
- Tan, Z.; Jiang, Z.; Guo, C.; Zhang, H. WSODet: A weakly supervised oriented detector for aerial object detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Ding, J.; Xue, N.; Long, Y.; Xia, G.S.; Lu, Q. Learning RoI transformer for oriented object detection in aerial images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2849–2858. [Google Scholar]
- Han, J.; Ding, J.; Li, J.; Xia, G.S. Align deep features for oriented object detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–11. [Google Scholar] [CrossRef]
- Yang, X.; Yan, J.; Feng, Z.; He, T. R3det: Refined single-stage detector with feature refinement for rotating object. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 3163–3171. [Google Scholar]
- Yang, X.; Zhou, Y.; Zhang, G.; Yang, J.; Wang, W.; Yan, J.; Zhang, X.; Tian, Q. The kfiou loss for rotated object detection. arXiv 2022, arXiv:2201.12558. [Google Scholar]
- Yang, Z.; Xia, X.; Liu, Y.; Wen, G.; Zhang, W.E.; Guo, L. LPST-Det: Local-Perception-Enhanced Swin Transformer for SAR Ship Detection. Remote Sens. 2024, 16, 483. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
Method | Backbone | Stage | Inshore | ||
---|---|---|---|---|---|
Recall | Precision | mAP | |||
S2ANet [51] | R152 | One | 81.7 | 53.0 | 77.0 |
R3Det [52] | R152 | One | 80.9 | 35.2 | 76.8 |
KFiou [53] | R152 | One | 81.7 | 38.8 | 76.0 |
Orient-RCNN [45] | R152 | Two | 84.0 | 82.7 | 80.6 |
LPST-Det [54] | R152 | Two | 84.7 | 73.5 | 81.3 |
Our Method | CSPNext | Two | 90.4 | 89.6 | 88.3 |
Method | Offshore | All Scenes | |||
Recall | Precision | mAP | mAP | ||
S2ANet [51] | 93.0 | 58.7 | 92.0 | 88.6 | |
R3Det [52] | 91.5 | 32.9 | 90.6 | 87.4 | |
KFiou [53] | 93.8 | 52.1 | 92.9 | 89.2 | |
Orient-RCNN [45] | 92.0 | 93.9 | 91.6 | 89.1 | |
LPST-Det [54] | 94.8 | 92.2 | 94.4 | 91.2 | |
Our Method | 94.1 | 87.4 | 93.0 | 92.6 |
ID | Burgs-Inspired | ADVO | mAP |
---|---|---|---|
1 | 88.6 | ||
2 | ✓ | 90.8 | |
3 | ✓ | 91.9 | |
4 | ✓ | ✓ | 92.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Li, Y.; Guo, J.; Li, Y.; Gao, X. BurgsVO: Burgs-Associated Vertex Offset Encoding Scheme for Detecting Rotated Ships in SAR Images. Remote Sens. 2025, 17, 388. https://doi.org/10.3390/rs17030388
Zhang M, Li Y, Guo J, Li Y, Gao X. BurgsVO: Burgs-Associated Vertex Offset Encoding Scheme for Detecting Rotated Ships in SAR Images. Remote Sensing. 2025; 17(3):388. https://doi.org/10.3390/rs17030388
Chicago/Turabian StyleZhang, Mingjin, Yaofei Li, Jie Guo, Yunsong Li, and Xinbo Gao. 2025. "BurgsVO: Burgs-Associated Vertex Offset Encoding Scheme for Detecting Rotated Ships in SAR Images" Remote Sensing 17, no. 3: 388. https://doi.org/10.3390/rs17030388
APA StyleZhang, M., Li, Y., Guo, J., Li, Y., & Gao, X. (2025). BurgsVO: Burgs-Associated Vertex Offset Encoding Scheme for Detecting Rotated Ships in SAR Images. Remote Sensing, 17(3), 388. https://doi.org/10.3390/rs17030388