Mapping Vegetation Changes in Mongolian Grasslands (1990–2024) Using Landsat Data and Advanced Machine Learning Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
Satellite Data
2.3. Methods
2.3.1. Generation of Training and Validation Datasets for the Study Area
2.3.2. Computation of Spectral Indices
2.3.3. Machine Learning Algorithm Development
2.3.4. Decadal Maps of Vegetation Changes
2.3.5. Accuracy Assessment
- is the predicted value;
- is the corresponding true value;
- nsamples is the total number of validation samples.
- is the observed agreement;
- is the expected agreement.
- is a true positive;
- is a false positive;
- is a false negative.
2.3.6. Analysis and Statistical Method
3. Results
3.1. Performance of the RF, XGB, and LGBM Models Using Ground Truthing Data for 2024 Data
3.2. Vegetation Classification and Accuracy Assessment
3.3. Vegetation Dynamics from 1990 to 2024
4. Discussion
4.1. Advanced Machine Learning Approach to Vegetation Mapping in Grasslands and Change Detection
4.2. Drivers of Vegetation Changes from 1990 to 2024
4.3. Implications for Sustainable Grassland Conservation and Management in the Context of Climate Change
4.4. Current Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reading, R.P.; Bedunah, D.; Amgalanbaatar, S. Conserving Mongolia’s Grasslands, with Challenges, Opportunities, and Lessons for North America’s Great Plains. Great Plains Res. 2010, 20, 85–107. [Google Scholar]
- Na, Y.; Li, J.; Hoshino, B.; Bao, S.; Qin, F.; Myagmartseren, P. Effects of Different Grazing Systems on Aboveground Biomass and Plant Species Dominance in Typical Chinese and Mongolian Steppes. Sustainability 2018, 10, 4753. [Google Scholar] [CrossRef]
- Dashpurev, B.; Wesche, K.; Jäschke, Y.; Oyundelger, K.; Phan, T.N.; Bendix, J.; Lehnert, L.W. A cost-effective method to monitor vegetation changes in steppes ecosystems: A case study on remote sensing of fire and infrastructure effects in eastern Mongolia. Ecol. Indic. 2021, 132, 108331. [Google Scholar] [CrossRef]
- Guo, X.; Chen, R.; Thomas, D.S.G.; Li, Q.; Xia, Z.; Pan, Z. Divergent processes and trends of desertification in Inner Mongolia and Mongolia. Land Degrad. Dev. 2021, 32, 3684–3697. [Google Scholar] [CrossRef]
- Hilker, T.; Natsagdorj, E.; Waring, R.H.; Lyapustin, A.; Wang, Y. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob. Change Biol. 2014, 20, 418–428. [Google Scholar] [CrossRef]
- Goodland, A.; Sheehy, D.; Shine, T. Mongolia Livestock Sector Study, Volume I–Synthesis Report; Sustainable Development Department, East Asia and Pacific Region, World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Volodya, E.; Yeo, M.J.; Kim, Y.P. Trends of Ecological Footprints and Policy Direction for Sustainable Development in Mongolia: A Case Study. Sustainability 2018, 10, 4026. [Google Scholar] [CrossRef]
- Yin, H.; Pflugmacher, D.; Li, A.; Li, Z.; Hostert, P. Land use and land cover change in Inner Mongolia—Understanding the effects of China’s re-vegetation programs. Remote Sens. Environ. 2018, 204, 918–930. [Google Scholar] [CrossRef]
- Phan, T.-N.; Dashpurev, B.; Wiemer, F.; Lehnert, L.W. A simple, fast, and accurate method for land cover mapping in Mongolia. Geocarto Int. 2022, 37, 14432–14450. [Google Scholar] [CrossRef]
- Meng, B.; Zhang, Y.; Yang, Z.; Lv, Y.; Chen, J.; Li, M.; Sun, Y.; Zhang, H.; Yu, H.; Zhang, J.; et al. Mapping Grassland Classes Using Unmanned Aerial Vehicle and MODIS NDVI Data for Temperate Grassland in Inner Mongolia, China. Remote Sens. 2022, 14, 2094. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Li, S.; Lei, J. Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020. Ecol. Indic. 2021, 129, 107908. [Google Scholar] [CrossRef]
- Reece, N.; Wingard, G.; Mandakh, B.; Reading, R.P. Using Random Forest to Classify Vegetation Communities in the Southern Area of Ikh Nart Nature Reserve in Mongolia. Mong. J. Biol. Sci. 2019, 17, 31–39. [Google Scholar]
- Price, K.P.; Guo, X.; Stiles, J.M. Optimal Landsat TM band combinations and vegetation indices for discrimination of six grassland types in eastern Kansas. Int. J. Remote Sens. 2002, 23, 5031–5042. [Google Scholar] [CrossRef]
- Liu, M.; Qu, Y.; Wang, J.; Liao, Y.; Zheng, G.; Guo, Y.; Liu, L. A 30-m annual grassland dataset from 1991 to 2020 for Inner Mongolia, China. Sci. Data 2024, 11, 1143. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Mohammadpour, P.; Viegas, D.X.; Viegas, C. Vegetation Mapping with Random Forest Using Sentinel 2 and GLCM Texture Feature—A Case Study for Lousã Region, Portugal. Remote Sens. 2022, 14, 4585. [Google Scholar] [CrossRef]
- Hill, M.J. Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect. Remote Sens. Environ. 2013, 137, 94–111. [Google Scholar] [CrossRef]
- Andreatta, D.; Gianelle, D.; Scotton, M.; Dalponte, M. Estimating grassland vegetation cover with remote sensing: A comparison between Landsat-8, Sentinel-2 and PlanetScope imagery. Ecol. Indic. 2022, 141, 109102. [Google Scholar] [CrossRef]
- Tuvdendorj, B.; Zeng, H.; Wu, B.; Elnashar, A.; Zhang, M.; Tian, F.; Nabil, M.; Nanzad, L.; Bulkhbai, A.; Natsagdorj, N. Performance and the Optimal Integration of Sentinel-1/2 Time-Series Features for Crop Classification in Northern Mongolia. Remote Sens. 2022, 14, 1830. [Google Scholar] [CrossRef]
- Norovsuren, B.; Tseveen, B.; Batomunkuev, V.; Renchin, T. Estimation for forest biomass and coverage using Satellite data in small scale area, Mongolia. IOP Conf. Ser. Earth Environ. Sci. 2019, 320, 012019. [Google Scholar] [CrossRef]
- Pham, T.D.; Ha, N.T.; Saintilan, N.; Skidmore, A.; Phan, D.C.; Le, N.N.; Viet, H.L.; Takeuchi, W.; Friess, D.A. Advances in Earth observation and machine learning for quantifying blue carbon. Earth-Sci. Rev. 2023, 243, 104501. [Google Scholar] [CrossRef]
- Valderrama-Landeros, L.; Flores-de-Santiago, F.; Kovacs, J.M.; Flores-Verdugo, F. An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme. Environ. Monit. Assess. 2017, 190, 23. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.D.; Xia, J.; Ha, N.T.; Bui, D.T.; Le, N.N.; Takeuchi, W. A Review of Remote Sensing Approaches for Monitoring Blue Carbon Ecosystems: Mangroves, Seagrassesand Salt Marshes during 2010–2018. Sensors 2019, 19, 1933. [Google Scholar] [CrossRef]
- Silveira, E.M.O.; Silva, S.H.G.; Acerbi-Junior, F.W.; Carvalho, M.C.; Carvalho, L.M.T.; Scolforo, J.R.S.; Wulder, M.A. Object-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 175–188. [Google Scholar] [CrossRef]
- West, H.; Quinn, N.; Horswell, M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sens. Environ. 2019, 232, 111291. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef]
- Vu, T.T.P.; Pham, T.D.; Saintilan, N.; Skidmore, A.; Luu, H.V.; Vu, Q.H.; Le, N.N.; Nguyen, H.Q.; Matsushita, B. Mapping Multi-Decadal Mangrove Extent in the Northern Coast of Vietnam Using Landsat Time-Series Data on Google Earth Engine Platform. Remote Sens. 2022, 14, 4664. [Google Scholar] [CrossRef]
- Phan, D.C.; Trung, T.H.; Truong, V.T.; Sasagawa, T.; Vu, T.P.T.; Bui, D.T.; Hayashi, M.; Tadono, T.; Nasahara, K.N. First comprehensive quantification of annual land use/cover from 1990 to 2020 across mainland Vietnam. Sci. Rep. 2021, 11, 9979. [Google Scholar] [CrossRef] [PubMed]
- Orkhonselenge, A.; Uuganzaya, M.; Davaagatan, T. Lake Ugii. In Lakes of Mongolia: Geomorphology, Geochemistry and Paleoclimatology; Orkhonselenge, A., Uuganzaya, M., Davaagatan, T., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 329–344. [Google Scholar] [CrossRef]
- Orkhonselenge, A.; Uuganzaya, M.; Davaagatan, T. Touristic Prospects of Lakes in Mongolia. In Lakes of Mongolia: Geomorphology, Geochemistry and Paleoclimatology; Orkhonselenge, A., Uuganzaya, M., Davaagatan, T., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 423–441. [Google Scholar] [CrossRef]
- Schwanghart, W.; Frechen, M.; Kuhn, N.J.; Schütt, B. Holocene environmental changes in the Ugii Nuur basin, Mongolia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 279, 160–171. [Google Scholar] [CrossRef]
- Sumiya, E.; Dorjsuren, B.; Yan, D.; Dorligjav, S.; Wang, H.; Enkhbold, A.; Weng, B.; Qin, T.; Wang, K.; Gerelmaa, T. Changes in water surface area of the lake in the Steppe Region of Mongolia: A case study of Ugii Nuur Lake, Central Mongolia. Water 2020, 12, 1470. [Google Scholar] [CrossRef]
- Osco, L.P.; Wu, Q.; de Lemos, E.L.; Gonçalves, W.N.; Ramos, A.P.M.; Li, J.; Marcato, J. The Segment Anything Model (SAM) for remote sensing applications: From zero to one shot. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103540. [Google Scholar] [CrossRef]
- Ha, N.T.; Pham, T.D.; Tran, T.T.H. Zoning Seagrass Protection in Lap an Lagoon, Vietnam Using a Novel Integrated Framework for Sustainable Coastal Management. Wetlands 2021, 41, 122. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Le, N.N.; Pham, T.D.; Yokoya, N.; Ha, N.T.; Nguyen, T.T.T.; Tran, T.D.T.; Pham, T.D. Learning from multimodal and multisensor earth observation dataset for improving estimates of mangrove soil organic carbon in Vietnam. Int. J. Remote Sens. 2021, 42, 6866–6890. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3146–3154. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- van Duynhoven, A.; Dragićević, S. The Geographic Automata Tool: A New General-Purpose Geosimulation Extension for ArcGIS Pro. Appl. Sci. 2024, 14, 6530. [Google Scholar] [CrossRef]
- Badreldin, N.; Prieto, B.; Fisher, R. Mapping Grasslands in Mixed Grassland Ecoregion of Saskatchewan Using Big Remote Sensing Data and Machine Learning. Remote Sens. 2021, 13, 4972. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Zhang, Y.; Shang, J. Review of Remote Sensing Applications in Grassland Monitoring. Remote Sens. 2022, 14, 2903. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, X.; Wang, Z.; Yu, G.; Liu, Y.; Liu, X.; Meng, D.; Zhang, Q.; Yu, G. Segment Anything Model (SAM) Assisted Remote Sensing Supervision for Mariculture—Using Liaoning Province, China as an Example. Remote Sens. 2023, 15, 5781. [Google Scholar] [CrossRef]
- Li, W.; Huntsinger, L. China’s Grassland Contract Policy and its Impacts on Herder Ability to Benefit in Inner Mongolia. Tragic Feedbacks. Ecol. Soc. 2011, 16, 1. [Google Scholar] [CrossRef]
- Addison, J.; Friedel, M.; Brown, C.; Davies, J.; Waldron, S. A critical review of degradation assumptions applied to Mongolia’s Gobi Desert. Rangel. J. 2012, 34, 125–137. [Google Scholar] [CrossRef]
- Dagvadorj, D.; Natsagadorj, L.; Dorjpurev, J.; Namkhainyam, B. MARCC 2009: Mongolia Assessment Report on Climate Change 2009. Available online: https://www.adaptation-undp.org/resources/mongolia-assessment-report-climate-change (accessed on 20 October 2024).
- de Bello, F.; Lavorel, S.; Gerhold, P.; Reier, Ü.; Pärtel, M. A biodiversity monitoring framework for practical conservation of grasslands and shrublands. Biol. Conserv. 2010, 143, 9–17. [Google Scholar] [CrossRef]
- Franke, J.; Keuck, V.; Siegert, F. Assessment of grassland use intensity by remote sensing to support conservation schemes. J. Nat. Conserv. 2012, 20, 125–134. [Google Scholar] [CrossRef]
- Primi, R.; Filibeck, G.; Amici, A.; Bückle, C.; Cancellieri, L.; Di Filippo, A.; Gentile, C.; Guglielmino, A.; Latini, R.; Mancini, L.D.; et al. From Landsat to leafhoppers: A multidisciplinary approach for sustainable stocking assessment and ecological monitoring in mountain grasslands. Agric. Ecosyst. Environ. 2016, 234, 118–133. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Y.; Wan, Y.; Liu, W.; Yang, W.; Zheng, Z.; Xiao, R. Histogram of the orientation of the weighted phase descriptor for multi-modal remote sensing image matching. ISPRS J. Photogramm. Remote Sens. 2023, 196, 1–15. [Google Scholar] [CrossRef]
- Wang, L.; Bai, Y.; Wang, J.; Zhou, Z.; Qin, F.; Hu, J. Histogram matching-based semantic segmentation model for crop classification with Sentinel-2 satellite imagery. GIScience Remote Sens. 2023, 60, 2281142. [Google Scholar] [CrossRef]
- Milella, A.; Reina, G.; Underwood, J. A Self-learning Framework for Statistical Ground Classification using Radar and Monocular Vision. J. Field Robot. 2015, 32, 20–41. [Google Scholar] [CrossRef]
- Wang, Y.; Albrecht, C.M.; Braham, N.A.A.; Mou, L.; Zhu, X.X. Self-Supervised Learning in Remote Sensing: A review. IEEE Geosci. Remote Sens. Mag. 2022, 10, 213–247. [Google Scholar] [CrossRef]
- Bhullar, A.; Nadeem, K.; Ali, R.A. Simultaneous multi-crop land suitability prediction from remote sensing data using semi-supervised learning. Sci. Rep. 2023, 13, 6823. [Google Scholar] [CrossRef]
- Yan, P.; He, F.; Yang, Y.; Hu, F. Semi-Supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks. IEEE Access 2020, 8, 54135–54144. [Google Scholar] [CrossRef]
Sensor | Spatial Resolution (m) | Image_ID | Cloud Cover (%) | Year | Band Used |
---|---|---|---|---|---|
Landsat-5 TM | 30 | LT05_L2SP_133027_19900908 LT05_L2SP_133028_19900908 LT05_L2SP_134027_19900916 | 2.0 0.0 2.0 | 1990 | Coastal, Blue, Green, Red, Near-infrared (NIR), Mid-infrared (MIR), Shortwave infrared 1 (SWIR 1), Shortwave infrared 2 (SWIR 2) |
Landsat-5 TM | 30 | LT05_L2SP_133027_20000919 LT05_L2SP_133028_20000919 LT05_L2SP_134027_20000926 | 1.0 0.0 3.0 | 2000 | |
Landsat-8 OLI | 30 | LC08_L2SP_133027_20200926 LC08_L2SP_133028_20200926 LC08_L2SP_134027_20200917 | 0.1 3.2 0.1 | 2020 | |
Landsat-9 OLI-2 | 30 | LC09_L2SP_133027_20240812 LC09_L2SP_133028_20240812 LC09_L2SP_134027_20240819 | 0.0 0.7 0.0 | 2024 |
Class Name | Number of Samples |
---|---|
Barren | 972 |
Cropland | 4045 |
Urban/residential areas | 143 |
Meadow grass | 2491 |
Montane (Stipa + Sedge + Artermisia) | 3496 |
Mix grasses (Stipa + Artermisia + Leymus) | 4773 |
Tall grass (Achnaterum) | 2453 |
Shrubland (Caragana microphylla) | 1728 |
Forest | 1645 |
Open forest | 6315 |
Bogland | 1935 |
Water bodies | 4538 |
Model | Overall Accuracy (%) | Kappa Coefficient | P | R | F1 |
---|---|---|---|---|---|
RF | 94.17 | 0.91 | 0.94 | 0.94 | 0.94 |
XGB | 94.92 | 0.92 | 0.95 | 0.95 | 0.95 |
LGBM | 92.60 | 0.88 | 0.92 | 0.93 | 0.92 |
Year | Overall Accuracy (%) | Kappa Coefficient |
---|---|---|
1990 (Landsat-5 TM) | 96.96 | 0.95 |
2000 (Landsat-5 TM) | 96.66 | 0.96 |
2020 (Landsat-8 OLI) | 94.08 | 0.92 |
2024 (Landsat-9 OLI-2) | 94.92 | 0.92 |
Class Name | 1990 | 2000 | 2020 | 2024 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | R | F1 Score | P | R | F1 Score | P | R | F1 Score | P | R | F1 Score | |
Barren | 0.89 | 0.79 | 0.84 | 0.94 | 0.82 | 0.88 | 0.91 | 0.72 | 0.80 | 0.91 | 0.78 | 0.84 |
Cropland | 0.99 | 1.00 | 1.00 | 0.99 | 1.00 | 0.99 | 0.97 | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 |
Urban | 0.94 | 0.90 | 0.92 | 0.95 | 0.83 | 0.89 | 0.90 | 0.69 | 0.78 | 0.94 | 0.68 | 0.79 |
Meadow grassland (sedge + Artemisia) | 0.94 | 0.88 | 0.91 | 0.95 | 0.93 | 0,94 | 0.95 | 0.85 | 0.89 | 0.94 | 0.90 | 0.92 |
Montane grassland | 0.92 | 0.95 | 0.94 | 0.94 | 0.97 | 0.96 | 0.88 | 0.90 | 0.89 | 0.86 | 0.85 | 0.85 |
Grassland (Stipa + Artemisa + Leymus) | 0.93 | 0.90 | 0.92 | 0.96 | 0.96 | 0.96 | 0.91 | 0.90 | 0.90 | 0.88 | 0.88 | 0.88 |
Tall grass (Achnaterum) | 0.94 | 0.96 | 0.95 | 0.97 | 0.97 | 0.97 | 0.94 | 0.97 | 0.95 | 0.90 | 0.87 | 0.89 |
Shrubland (Caragana microphylla + Caragana pygmane) | 0.96 | 0.93 | 0.94 | 0.95 | 0.96 | 0.95 | 0.91 | 0.87 | 0.89 | 0.87 | 0.86 | 0.87 |
Forest | 0.90 | 0.83 | 0.87 | 0.93 | 0.87 | 0.90 | 0.90 | 0.75 | 0.82 | 0.80 | 0.60 | 0.62 |
Open forest | 0.90 | 0.93 | 0.91 | 0.93 | 0.96 | 0.94 | 0.87 | 0.94 | 0.91 | 0.86 | 0.95 | 0.90 |
Bog | 0.97 | 0.97 | 0.97 | 0.99 | 0.99 | 0.99 | 0.97 | 0.97 | 0.97 | 0.97 | 0.98 | 0.97 |
Water bodies | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 0.99 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyamtseren, M.; Pham, T.D.; Vu, T.T.P.; Navaandorj, I.; Shoyama, K. Mapping Vegetation Changes in Mongolian Grasslands (1990–2024) Using Landsat Data and Advanced Machine Learning Algorithm. Remote Sens. 2025, 17, 400. https://doi.org/10.3390/rs17030400
Nyamtseren M, Pham TD, Vu TTP, Navaandorj I, Shoyama K. Mapping Vegetation Changes in Mongolian Grasslands (1990–2024) Using Landsat Data and Advanced Machine Learning Algorithm. Remote Sensing. 2025; 17(3):400. https://doi.org/10.3390/rs17030400
Chicago/Turabian StyleNyamtseren, Mandakh, Tien Dat Pham, Thuy Thi Phuong Vu, Itgelt Navaandorj, and Kikuko Shoyama. 2025. "Mapping Vegetation Changes in Mongolian Grasslands (1990–2024) Using Landsat Data and Advanced Machine Learning Algorithm" Remote Sensing 17, no. 3: 400. https://doi.org/10.3390/rs17030400
APA StyleNyamtseren, M., Pham, T. D., Vu, T. T. P., Navaandorj, I., & Shoyama, K. (2025). Mapping Vegetation Changes in Mongolian Grasslands (1990–2024) Using Landsat Data and Advanced Machine Learning Algorithm. Remote Sensing, 17(3), 400. https://doi.org/10.3390/rs17030400