Spatial and Temporal Variations in Soil Organic Carbon in Northwestern China via Comparisons of Different Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studying Area
2.2. Soil Sampling and Analysis of Soil Organic Matter
2.3. Data
2.3.1. Digital Elevation Model (DEM)
2.3.2. Meteorological Data
2.3.3. HWSD
2.3.4. Net Primary Productivity (NPP)
2.3.5. Normalized Difference Vegetation Index (NDVI)
2.4. Methods
2.4.1. Support Vector Regression (SVR)
2.4.2. Multiple Linear Regression (MLR)
2.4.3. Random Forest (RF)
2.4.4. Estimating Methods
3. Results
3.1. Influence of the Number of Samples
3.2. Performance with Different Schemes of Factors
3.2.1. Comparisons of the Effects of Single Environmental Factors on the Results of the Estimation
3.2.2. Comparisons of the Effect of the Performance of Multiple Environmental Factors on the Estimated Results
3.3. Spatial Distribution of SOC in the Shiyang River Basin
4. Discussion
4.1. Differences in the Performance of the Three Methods
4.2. Influences of the Latitude, Aspect, and the NDVI on SOC
5. Conclusions
- 1.
- The optimal number of training samples is 47, which is 72% of all sample points. This percentage is the same as that in other studies. When the performances of the LR, RF, and SVR methods are compared, the RF and SVR methods are better than the LR method because of the nonlinear mechanism.
- 2.
- The best estimation of SOC is achieved when latitude, slope, and NDVI are used as predictor variables in this study, whose spatial scale is the watershed scale and the period is 10 years. Vegetation distribution exhibits a significant correlation with latitude, and this distribution plays a key role in determining SOC content. Additionally, temperature and precipitation show a clear stepwise distribution that corresponds to latitude variations within the study area.
- 3.
- The spatial distribution and variability of SOC increased from 2011 to 2021. In the northwestern part of the middle basin, SOC decreased due to industrial activities, coinciding with a reduction in grassland and forest areas. In contrast, SOC levels downstream exhibited a continuous increase, primarily driven by a range of ecological restoration efforts.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Zhang, C.; Wang, N.; Han, Q.; Zhang, X.; Liu, Y.; Xu, L.; Ye, W. Substantial inorganic carbon sink in closed drainage basins globally. Nat. Geosci. 2017, 10, 501–506. [Google Scholar] [CrossRef]
- Piao, S.; Sitch, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Wang, X.; Ahlström, A.; Anav, A.; Canadell, J.G.; Cong, N. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob. Change Biol. 2013, 19, 2117–2132. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Liu, C.; Huang, M.; Li, H.; Leung, L.R. Steady state estimation of soil organic carbon using satellite-derived canopy leaf area index. J. Adv. Model. Earth Syst. 2014, 6, 1049–1064. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Minaei, F.; Talebi-khiyavi, H.; Xu, T.; Homaee, M. Synergetic use of multi-temporal Sentinel-1, Sentinel-2, NDVI, and topographic factors for estimating soil organic carbon. Catena 2022, 212, 106077. [Google Scholar] [CrossRef]
- Lal, R. Carbon sequestration in dryland ecosystems. Environ. Manag. 2004, 33, 528–544. [Google Scholar] [CrossRef] [PubMed]
- Jandl, R.; Rodeghiero, M.; Martinez, C.; Cotrufo, M.F.; Bampa, F.; Van Wesemael, B.; Harrison, R.B.; Guerrini, I.A.; Richter, D.D., Jr.; Rustad, L. Current status, uncertainty and future needs in soil organic carbon monitoring. Sci. Total Environ. 2014, 468, 376–383. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Zhang, C.; Zhou, X. Significance of proxy indicators for lake sediments in arid zones—An example of surface sediment samples from Inojirasawa. J. Lanzhou Univ. (Nat. Sci.) 2014, 50, 816–823. [Google Scholar] [CrossRef]
- He, M.; Tang, L.; Li, C.; Ren, J.; Zhang, L.; Li, X. Dynamics of soil organic carbon and nitrogen and their relations to hydrothermal variability in dryland. J. Environ. Manag. 2022, 319, 115751. [Google Scholar] [CrossRef]
- Ahirwal, J.; Nath, A.; Brahma, B.; Deb, S.; Sahoo, U.K.; Nath, A.J. Patterns and driving factors of biomass carbon and soil organic carbon stock in the Indian Himalayan region. Sci. Total Environ. 2021, 770, 145292. [Google Scholar] [CrossRef]
- van der Meij, W.M. Evolutionary pathways in soil-landscape evolution models. SOIL Discuss. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Wang, B.; Waters, C.; Orgill, S.; Gray, J.; Cowie, A.; Clark, A.; Li Liu, D. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia. Sci. Total Environ. 2018, 630, 367–378. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, S.M.; Angers, D.A.; Holden, N.M.; McBratney, A.B. Soil organic carbon across scales. Glob. Change Biol. 2015, 21, 3561–3574. [Google Scholar] [CrossRef]
- Pan, G.; Xu, X.; Smith, P.; Pan, W.; Lal, R. An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring. Agric. Ecosyst. Environ. 2010, 136, 133–138. [Google Scholar] [CrossRef]
- Tifafi, M.; Guenet, B.; Hatté, C. Large differences in global and regional total soil carbon stock estimates based on SoilGrids, HWSD, and NCSCD: Intercomparison and evaluation based on field data from USA, England, Wales, and France. Glob. Biogeochem. Cycles 2018, 32, 42–56. [Google Scholar] [CrossRef]
- Silatsa, F.B.; Yemefack, M.; Tabi, F.O.; Heuvelink, G.B.; Leenaars, J.G. Assessing countrywide soil organic carbon stock using hybrid machine learning modelling and legacy soil data in Cameroon. Geoderma 2020, 367, 114260. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, H.; Ma, N.; Shang, S.; Wang, Y.; Xu, Q.; Zhu, G. A global dataset of terrestrial evapotranspiration and soil moisture dynamics from 1982 to 2020. Sci. Data 2024, 11, 445. [Google Scholar] [CrossRef]
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef] [PubMed]
- Tong, R.; Liang, X.; Guan, Q.; Song, Y.; Chen, Y.; Wang, Q.; Zheng, L.; Jin, Q.; Yu, Y.; He, J.; et al. Accounting for Carbon Stocks in Terrestrial Soils and Carbon Sinks in Land Management in China, 2000–2020. Acta Geogr. Sin. 2023, 78, 2209–2222. [Google Scholar]
- Jiang, B.; Xu, W.; Zhang, D.; Nie, F.; Sun, Q. Contrasting multiple deterministic interpolation responses to different spatial scale in prediction soil organic carbon: A case study in Mollisols regions. Ecol. Indic. 2022, 134, 108472. [Google Scholar] [CrossRef]
- Hu, B.; Xie, M.; Zhou, Y.; Chen, S.; Zhou, Y.; Ni, H.; Peng, J.; Ji, W.; Hong, Y.; Li, H. A high-resolution map of soil organic carbon in cropland of Southern China. Catena 2024, 237, 107813. [Google Scholar] [CrossRef]
- Khormali, F.; Kehl, M. Micromorphology and development of loess-derived surface and buried soils along a precipitation gradient in Northern Iran. Quat. Int. 2011, 234, 109–123. [Google Scholar] [CrossRef]
- Beillouin, D.; Corbeels, M.; Demenois, J.; Berre, D.; Boyer, A.; Fallot, A.; Feder, F.; Cardinael, R. A global meta-analysis of soil organic carbon in the Anthropocene. Nat. Commun. 2023, 14, 3700. [Google Scholar] [CrossRef] [PubMed]
- Wiesmeier, M.; von Lützow, M.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; Kögel-Knabner, I. Land use effects on organic carbon storage in soils of Bavaria: The importance of soil types. Soil Tillage Res. 2015, 146, 296–302. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Wang, S.; Bian, Z.; Zhou, W.; Wang, C. Effects of farmland landscape pattern on spatial distribution of soil organic carbon in Lower Liaohe Plain of northeastern China. Ecol. Indic. 2022, 145, 109652. [Google Scholar] [CrossRef]
- Chen, F.; Feng, P.; Harrison, M.T.; Wang, B.; Liu, K.; Zhang, C.; Hu, K. Cropland carbon stocks driven by soil characteristics, rainfall and elevation. Sci. Total Environ. 2023, 862, 160602. [Google Scholar] [CrossRef]
- Zhang, S.; Tian, J.; Lu, X.; Tian, Q. Temporal and spatial dynamics distribution of organic carbon content of surface soil in coastal wetlands of Yancheng, China from 2000 to 2022 based on Landsat images. Catena 2023, 223, 106961. [Google Scholar] [CrossRef]
- Zhang, C.-t.; Yang, Y. Can the spatial prediction of soil organic matter be improved by incorporating multiple regression confidence intervals as soft data into BME method? Catena 2019, 178, 322–334. [Google Scholar] [CrossRef]
- Qu, M.; Li, W.; Zhang, C.; Huang, B.; Zhao, Y. Spatially nonstationary relationships between copper accumulation in rice grain and some related soil properties in paddy fields at a regional scale. Soil Sci. Soc. Am. J. 2014, 78, 1765–1774. [Google Scholar] [CrossRef]
- Ma, D. Characteristics of spatial and temporal variations in water production and water conservation in the Shiyang River Basin and their influencing factors. J. Northwest Norm. Univ. (Nat. Sci.) 2022. (In Chinese) [Google Scholar] [CrossRef]
- Li, J.; Zhang, L. Comparison of Four Methods for Vertical Extrapolation of Soil Moisture Contents from Surface to Deep Layers in an Alpine Area. Sustainability 2021, 13, 8862. [Google Scholar] [CrossRef]
- Tang, K.; Zhao, X.; Xu, Z.; Sun, H. A stacking ensemble model for predicting soil organic carbon content based on visible and near-infrared spectroscopy. Infrared Phys. Technol. 2024, 140, 105404. [Google Scholar] [CrossRef]
- Xu, X.; Du, C.; Ma, F.; Qiu, Z.; Zhou, J. A framework for high-resolution mapping of soil organic matter (SOM) by the integration of fourier mid-infrared attenuation total reflectance spectroscopy (FTIR-ATR), sentinel-2 images, and DEM derivatives. Remote Sens. 2023, 15, 1072. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Lin, Z.; Zhao, Y.; Yan, Z.; Zhang, K.; Visser, M.; Townsend, P.A.; Wu, J. Spectra-phenology integration for high-resolution, accurate, and scalable mapping of foliar functional traits using time-series Sentinel-2 data. Remote Sens. Environ. 2024, 305, 114082. [Google Scholar] [CrossRef]
- Berdyyev, A.; Al-Masnay, Y.A.; Juliev, M.; Abuduwaili, J. Desertification Monitoring Using Machine Learning Techniques with Multiple Indicators Derived from Sentinel-2 in Turkmenistan. Remote Sens. 2024, 16, 4525. [Google Scholar] [CrossRef]
- Odebiri, O.; Mutanga, O.; Odindi, J.; Slotow, R.; Mafongoya, P.; Lottering, R.; Naicker, R.; Matongera, T.N.; Mngadi, M. Mapping sub-surface distribution of soil organic carbon stocks in South Africa’s arid and semi-arid landscapes: Implications for land management and climate change mitigation. Geoderma Reg. 2024, 37, e00817. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.B.; Shukla, M. Assessment of soil organic and inorganic carbon stocks in arid and semi-arid rangelands of southeastern New Mexico. Ecol. Indic. 2024, 166, 112398. [Google Scholar]
- Sun, W.; Zhang, T.; Clow, G.D.; Sun, Y.-H.; Zhao, W.-Y.; Liang, B.-B.; Fan, C.-Y.; Peng, X.-Q.; Cao, B. Observed permafrost thawing and disappearance near the altitudinal limit of permafrost in the Qilian Mountains. Adv. Clim. Change Res. 2022, 13, 642–650. [Google Scholar] [CrossRef]
- Zhao, Q.; Ye, B.; Ding, Y.; Zhang, S.; Yi, S.; Wang, J.; Shangguan, D.; Zhao, C.; Han, H. Coupling a glacier melt model to the Variable Infiltration Capacity (VIC) model for hydrological modeling in north-western China. Environ. Earth Sci. 2013, 68, 87–101. [Google Scholar] [CrossRef]
- Meybeck, M. Global analysis of river systems: From Earth system controls to Anthropocene syndromes. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2003, 358, 1935–1955. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Morrill, C. A Holocene East Asian winter monsoon record at the southern edge of the Gobi Desert and its comparison with a transient simulation. Clim. Dyn. 2015, 45, 1219–1234. [Google Scholar] [CrossRef]
- Wang, X.; He, K.; Dong, Z. Effects of climate change and human activities on runoff in the Beichuan River Basin in the northeastern Tibetan Plateau, China. Catena 2019, 176, 81–93. [Google Scholar] [CrossRef]
- Zhu, G.; Wan, Q.; Yong, L.; Li, Q.; Zhang, Z.; Guo, H.; Zhang, Y.; Sun, Z.; Zhang, Z.; Ma, H. Dissolved organic carbon transport in the Qilian mountainous areas of China. Hydrol. Process. 2020, 34, 4985–4995. [Google Scholar] [CrossRef]
- Wang, N.; Xue, J.; Peng, J.; Biswas, A.; He, Y.; Shi, Z. Integrating remote sensing and landscape characteristics to estimate soil salinity using machine learning methods: A case study from Southern Xinjiang, China. Remote Sens. 2020, 12, 4118. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, P.; Zhang, X.; Tong, H.; Zhang, W.; Liu, Y. Research on landscape pattern construction and ecological restoration of Jiuquan City based on ecological security evaluation. Sustainability 2021, 13, 5732. [Google Scholar] [CrossRef]
- Xu, C.; Hu, X.; Wang, X.; Liu, Z.; Tian, J.; Ren, Z. Spatiotemporal variations of eco-environmental vulnerability in Shiyang River Basin, China. Ecol. Indic. 2024, 158, 111327. [Google Scholar] [CrossRef]
- Zhang, Z.; Jia, W.; Zhu, G.; Shi, Y.; Yang, L.; Xiong, H.; Zhang, M.; Zhang, F. Hydrochemical characteristics and ion sources of river water in the upstream of the Shiyang River, China. Environ. Earth Sci. 2021, 80, 614. [Google Scholar] [CrossRef]
- Zhang, W.; Wan, Q.; Zhu, G.; Xu, Y. Distribution of soil organic carbon and carbon sequestration potential of different geomorphic units in Shiyang river basin, China. Environ. Geochem. Health 2023, 45, 4071–4086. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Y.; Zhu, G.; Lu, S.; Qiu, D.; Jiao, Y.; Meng, G.; Chen, L.; Li, R.; Zhang, W. Agricultural Activities Increased Soil Organic Carbon in Shiyang River Basin, a typical inland river basin in China. Res. Sq. 2024, preprint. [Google Scholar] [CrossRef]
- Ngabire, M.; Wang, T.; Xue, X.; Liao, J.; Sahbeni, G.; Huang, C.; Duan, H.; Song, X. Soil salinization mapping across different sandy land-cover types in the Shiyang River Basin: A remote sensing and multiple linear regression approach. Remote Sens. Appl. Soc. Environ. 2022, 28, 100847. [Google Scholar] [CrossRef]
- Ngabire, M.; Wang, T.; Liao, J.; Sahbeni, G. Quantitative Analysis of Desertification-Driving Mechanisms in the Shiyang River Basin: Examining Interactive Effects of Key Factors through the Geographic Detector Model. Remote Sens. 2023, 15, 2960. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Takeda, H.; Tamura, Y.; Sato, S. Using the ensemble Kalman filter for electricity load forecasting and analysis. Energy 2016, 104, 184–198. [Google Scholar] [CrossRef]
- Choubin, B.; Darabi, H.; Rahmati, O.; Sajedi-Hosseini, F.; Kløve, B. River suspended sediment modelling using the CART model: A comparative study of machine learning techniques. Sci. Total Environ. 2018, 615, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T. Construction of dynamic model and optimization of transportation mode of solid waste in typical scenarios of non-waste city. J. Harbin Inst. Technol. 2020. Available online: https://ss.zhizhen.com/detail38502727e7500f26418314f75983cca59c4ca8c76a193bce1921b0a3ea255101928fa69a765a3d2d9d38b5213d88b75302aa9b643567414b03d3e8bdc9ed00a22dd8f5ad09666cdb88fcefc965c92709 (accessed on 20 May 2024). (In Chinese).
- Yuan, S.; Quiring, S.M. Comparison of three methods of interpolating soil moisture in Oklahoma. Int. J. Climatol. 2017, 37, 987–997. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, Z.; Zhang, W.; Jia, H.; Zhang, J. Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: A case study in Jiuzhaigou region. Catena 2020, 195, 104851. [Google Scholar] [CrossRef]
- Yang, C.; Liu, L.-L.; Huang, F.; Huang, L.; Wang, X.-M. Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples. Gondwana Res. 2023, 123, 198–216. [Google Scholar] [CrossRef]
- Liu, H.; Chen, S.-M.; Cocea, M. Subclass-based semi-random data partitioning for improving sample representativeness. Inf. Sci. 2019, 478, 208–221. [Google Scholar] [CrossRef]
- Saurette, D.D.; Berg, A.A.; Laamrani, A.; Heck, R.J.; Gillespie, A.W.; Voroney, P.; Biswas, A. Effects of sample size and covariate resolution on field-scale predictive digital mapping of soil carbon. Geoderma 2022, 425, 116054. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, Q.; Sun, D.; Ding, X.; Meng, F.-R. Extended model prediction of high-resolution soil organic matter over a large area using limited number of field samples. Comput. Electron. Agric. 2020, 169, 105172. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.; Chen, Y.; Shi, T.; Luo, M.; Ju, Q.; Zhang, H.; Wang, S. Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China. Remote Sens. 2019, 11, 1683. [Google Scholar] [CrossRef]
- Emadi, M.; Taghizadeh-Mehrjardi, R.; Cherati, A.; Danesh, M.; Mosavi, A.; Scholten, T. Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sens. 2020, 12, 2234. [Google Scholar] [CrossRef]
- Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Jung, M.; Migliavacca, M.; Saatchi, S.; Santoro, M.; Thurner, M.; Weber, U. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 2014, 514, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Batjes, N.H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 2016, 269, 61–68. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Sci. Total Environ. 2020, 729, 138244. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Li, L. Response and Prediction Analysis of ENSO Events to Arid Climate in the Shiyang River Basin. Desert Oasis Meteorol. 2020, 14, 46–51. [Google Scholar]
- Restrepo-Coupe, N.; Campos, K.S.; Alves, L.F.; Longo, M.; Wiedemann, K.T.; de Oliveira Jr, R.C.; Aragao, L.E.; Christoffersen, B.O.; Camargo, P.B.; Figueira, A.M.S. Contrasting carbon cycle responses to dry (2015 El Niño) and wet (2008 La Niña) extreme events at an Amazon tropical forest. Agric. For. Meteorol. 2024, 353, 110037. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, L.; Chen, Y.; Lu, H. Impact of policy factors on ecological changes in Minqin over the past 60 years. J. Arid Land Resour. Environ. 2014, 28, 73–78. [Google Scholar] [CrossRef]
- Xue, J.; Zhong, W.; Xie, L.; Unkel, I. Vegetation responses to the last glacial and early Holocene environmental changes in the northern Leizhou Peninsula, south China. Quat. Res. 2015, 84, 223–231. [Google Scholar] [CrossRef]
- He, Y. Analysis of feasibility and solution measures for increasing water transfer to Minqin in Jingdian Phase II. Value Eng. 2024, 43, 29–31. [Google Scholar]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Zhang, W.-c.; Wan, H.-s.; Zhou, M.-h.; Wu, W.; Liu, H.-b. Soil total and organic carbon mapping and uncertainty analysis using machine learning techniques. Ecol. Indic. 2022, 143, 109420. [Google Scholar] [CrossRef]
- Chen, B.; Zhu, Z.; Yang, W. Study on habitat quality assessment and ecological restoration strategy in Jinchang City based on InVEST model. Gansu Sci. Technol. Inf. 2024, 53, 72–80. [Google Scholar]
- Nguyen, T.T.; Pham, T.D.; Nguyen, C.T.; Delfos, J.; Archibald, R.; Dang, K.B.; Hoang, N.B.; Guo, W.; Ngo, H.H. A novel intelligence approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data fusion. Sci. Total Environ. 2022, 804, 150187. [Google Scholar] [CrossRef]
- Bonfatti, B.R.; Hartemink, A.E.; Giasson, E.; Tornquist, C.G.; Adhikari, K. Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma 2016, 261, 204–221. [Google Scholar] [CrossRef]
- Liu, B.; Guo, B.; Zhuo, R.; Dai, F. Estimation of soil organic carbon in LUCAS soil database using Vis-NIR spectroscopy based on hybrid kernel Gaussian process regression. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 321, 124687. [Google Scholar] [CrossRef]
- Mishra, U.; Hugelius, G.; Shelef, E.; Yang, Y.; Strauss, J.; Lupachev, A.; Harden, J.W.; Jastrow, J.D.; Ping, C.-L.; Riley, W.J. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Sci. Adv. 2021, 7, eaaz5236. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Wu, W.; Liu, H. Prediction of Soil Organic Carbon under Different Land Use Types Using Sentinel-1/-2 Data in a Small Watershed. Remote Sens. 2021, 13, 1229. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Zhao, Y.; Zhai, J.; Liu, Y.; Han, S.; Liu, K. Research on the Impact of Climate Change and Human Activities on the NDVI of Arid Areas—A Case Study of the Shiyang River Basin. Land 2024, 13, 533. [Google Scholar] [CrossRef]
- Hu, Y.; Fister, W.; Kuhn, N.J. Temporal variation of SOC enrichment from interrill erosion over prolonged rainfall simulations. Agriculture 2013, 3, 726–740. [Google Scholar] [CrossRef]
- Li, P. Vertical zonal differentiation of surface sediments in the Shiyang River Basin and its application to environmental change. J. Lanzhou Univ. (Nat. Sci.) 2018. Available online: https://ss.zhizhen.com/detail38502727e7500f26092d2caccfc2605be4bcfd07be3ac4dd1921b0a3ea255101928fa69a765a3d2d695ce4c3744cf04e416453b0ac50e5618d8eefdefd1041d7e96669aeb633e2437ce31be008ef327c (accessed on 20 June 2024). (In Chinese).
- Zobeck, T.M.; Baddock, M.; Van Pelt, R.S.; Tatarko, J.; Acosta-Martinez, V. Soil property effects on wind erosion of organic soils. Aeolian Res. 2013, 10, 43–51. [Google Scholar] [CrossRef]
- Lark, R. Soil–landform relationships at within-field scales: An investigation using continuous classification. Geoderma 1999, 92, 141–165. [Google Scholar] [CrossRef]
- Yang, L.; Jia, W.; Shi, Y.; Zhang, Z.; Xiong, H.; Zhu, G. Spatiotemporal differentiation of soil organic carbon of grassland and its relationship with soil physicochemical properties on the northern slope of Qilian mountains, China. Sustainability 2020, 12, 9396. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Schmidt, K.; Amirian-Chakan, A.; Rentschler, T.; Zeraatpisheh, M.; Sarmadian, F.; Valavi, R.; Davatgar, N.; Behrens, T.; Scholten, T. Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space. Remote Sens. 2020, 12, 1095. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Liu, S.; Xiao, J.; Zhao, W.; Chen, J.; Alexandrov, G.; Cao, Y. Decipher soil organic carbon dynamics and driving forces across China using machine learning. Glob. Change Biol. 2022, 28, 3394–3410. [Google Scholar] [CrossRef]
- Gao, C.; Yan, X.; Qiao, X.; Wei, K.; Zhang, X.; Yang, S.; Wang, C.; Yang, W.; Feng, M.; Xiao, L. Multivariate prediction of soil aggregate-associated organic carbon by simulating satellite sensor bands. Comput. Electron. Agric. 2023, 209, 107859. [Google Scholar] [CrossRef]
Location | Sample Numbers | Land Use Types |
---|---|---|
Haxi (HX) | 5 | Forest |
Maozang Township (ZM) | 6 | Grassland |
BaiTa Lake (BT) | 1 | Cropland |
Wuwei Basin (WQ) | 12 | Cropland |
Datan Township (B) | 19 | Cropland |
Qingtu Lake (SQ) | 22 | Desert |
Environmental Factors | Abbreviation | Environmental Factors | Abbreviation |
---|---|---|---|
Longitude | Lon | Dewp_Attributes | D_A |
Latitude | Lat | SLP_Attributes | S_A |
Elevation | E | Visib | V |
HWSD | H | Visib_Attributes | V_A |
NPP | NPP | WDSP | W |
NDVI | N | WDSP_Attributes | W_A |
Slope | S | MXSPD | MXSPD |
Aspect | A | MIN | MIN |
Temperature | T | MAX | MAX |
Temp_Attributes | T_A | PRCP | P |
Dewp | D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Hu, N.; Qi, Y.; Zhao, W.; Dong, Q. Spatial and Temporal Variations in Soil Organic Carbon in Northwestern China via Comparisons of Different Methods. Remote Sens. 2025, 17, 420. https://doi.org/10.3390/rs17030420
Li J, Hu N, Qi Y, Zhao W, Dong Q. Spatial and Temporal Variations in Soil Organic Carbon in Northwestern China via Comparisons of Different Methods. Remote Sensing. 2025; 17(3):420. https://doi.org/10.3390/rs17030420
Chicago/Turabian StyleLi, Jinlin, Ning Hu, Yuxin Qi, Wenzhi Zhao, and Qiqi Dong. 2025. "Spatial and Temporal Variations in Soil Organic Carbon in Northwestern China via Comparisons of Different Methods" Remote Sensing 17, no. 3: 420. https://doi.org/10.3390/rs17030420
APA StyleLi, J., Hu, N., Qi, Y., Zhao, W., & Dong, Q. (2025). Spatial and Temporal Variations in Soil Organic Carbon in Northwestern China via Comparisons of Different Methods. Remote Sensing, 17(3), 420. https://doi.org/10.3390/rs17030420