Spatiotemporal Patterns of Chlorophyll-a Concentration in a Hypersaline Lake Using High Temporal Resolution Remotely Sensed Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Training Data
2.3. Imagery
2.4. Image Processing and Data Extraction
3. Results
3.1. Satellite Product Comparisons
3.2. Spatial-Temporal Variation in Chlorophyll
4. Discussion
4.1. Remote Sensing
4.2. Spatial-Temporal Changes in Chlorophyll
4.2.1. Broad Scale Patterns in Gilbert Bay
4.2.2. Temporal Changes in Chl a
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Huot, Y.; Babin, M.; Bruyant, F.; Grob, C.; Twardowski, M.S.; Claustre, H. Does Chlorophyll a Provide the Best Index of Phytoplankton Biomass for Primary Productivity Studies? Biogeosci. Discuss. 2007, 4, 707–745. [Google Scholar]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the Volume and Age of Water Stored in Global Lakes Using a Geo-Statistical Approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef] [PubMed]
- Hammer, U.T. Primary Production in Saline Lakes. Hydrobiologia 1981, 81, 47–57. [Google Scholar] [CrossRef]
- Timms, B.V. Waterbirds of the Saline Lakes of the Paroo, Arid-Zone Australia: A Review with Special Reference to Diversity and Conservation. Nat. Resour. Environ. Issues 2009, 15, 46. [Google Scholar]
- Roberts, A.J. Avian Diets in a Saline Ecosystem: Great Salt Lake, Utah, USA. Hum.-Wildl. Interact. 2013, 7, 158–168. [Google Scholar] [CrossRef]
- Hall, D.K.; Kimball, J.S.; Larson, R.; DiGirolamo, N.E.; Casey, K.A.; Hulley, G. Intensified Warming and Aridity Accelerate Terminal Lake Desiccation in the Great Basin of the Western United States. Earth Space Sci. 2023, 10, e2022EA002630. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Miller, C.; Null, S.E.; DeRose, R.J.; Wilcock, P.; Hahnenberger, M.; Howe, F.; Moore, J. Decline of the World’s Saline Lakes. Nat. Geosci. 2017, 10, 816–821. [Google Scholar] [CrossRef]
- Hassibe, W.R.; Keck, W.G. The Great Salt Lake; General Information Product: Washington, DC, USA, 1991; p. 28. [Google Scholar]
- Tarboton, D. Collection of Great Salt Lake Data; HydroShare: Arlington, MA, USA, 2023. [Google Scholar]
- Division of Forestry, Fire & State Lands. U.D. of N.R. Final Great Salt Lake Comprehensive Management Plan and Record of Decision; SWCA: Phoenix, AZ, USA, 2013; p. 391.
- Great Salt Lake Advisory Council Economic Significance of the Great Salt Lake to the State of Utah. Available online: https://lf-public.deq.utah.gov/WebLink/DocView.aspx?id=392799&eqdocs=DWQ-2012-006864 (accessed on 15 November 2024).
- Paul, D.S.; Manning, A.E. Great Salt Lake Waterbird Survey Five-Year Report (1997–2001); Utah Division of Wildlife Resources: Salt Lake City, UT, USA, 2002; p. 64. [Google Scholar]
- Sorensen, E.D.; Hoven, H.M.; Neill, J. Great Salt Lake Shorebirds, Their Habitats, and Food Base. In Great Salt Lake Biology: A Terminal Lake in a Time of Change; Springer: Berlin/Heidelberg, Germany, 2020; pp. 263–309. ISBN 3030403513. [Google Scholar]
- Castellino, M.; Carle, R.; Lesterhuis, A.; Clay, R. Conservation Plan for Wilson’s Phalarope (Phalaropus Tricolor), Version 2.0; Western Hemisphere Shorebird Reserve Network; Manomet Inc.: Manomet, MA, USA, 2024. [Google Scholar]
- Matthews, M.W. A Current Review of Empirical Procedures of Remote Sensing in Inland and Near-Coastal Transitional Waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Falkowski, P.G. Photosynthetic Rates Derived from Satellite-Based Chlorophyll Concentration. Limnol. Oceanogr. 1997, 42, 1–20. [Google Scholar] [CrossRef]
- Tebbs, E.J.; Remedios, J.J.; Harper, D.M. Remote Sensing of Chlorophyll-a as a Measure of Cyanobacterial Biomass in Lake Bogoria, a Hypertrophic, Saline–Alkaline, Flamingo Lake, Using Landsat ETM+. Remote Sens. Environ. 2013, 135, 92–106. [Google Scholar] [CrossRef]
- Hansen, C.H.; Williams, G.P. Evaluating Remote Sensing Model Specification Methods for Estimating Water Quality in Optically Diverse Lakes throughout the Growing Season. Hydrology 2018, 5, 62. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.; Naftz, D.; Bradt, S. Spatial Analyses of Trophic Linkages Between Basins in the Great Salt Lake; Forestry, Fire & State Lands: Salt Lake City, UT, USA, 2008. [Google Scholar]
- Hansen, C.H.; Burian, S.J.; Dennison, P.E.; Williams, G.P. Evaluating Historical Trends and Influences of Meteorological and Seasonal Climate Conditions on Lake Chlorophyll a Using Remote Sensing. Lake Reserv. Manag. 2020, 36, 45–63. [Google Scholar] [CrossRef]
- Baskin, R.L. Occurrence and Spatial Distribution of Microbial Bioherms in Great Salt Lake, Utah. Ph.D. Thesis, University of Utah, Salt Lake City, UT, USA, 2014. [Google Scholar]
- Lindsay, M.R.; Anderson, C.; Fox, N.; Scofield, G.; Allen, J.; Anderson, E.; Bueter, L.; Poudel, S.; Sutherland, K.; Munson-McGee, J.H.; et al. Microbialite Response to an Anthropogenic Salinity Gradient in Great Salt Lake, Utah. Geobiology 2017, 15, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Brothers, S.; Cobb, M.; Ramsey, R.D.; Wurtsbaugh, W.A.; Rivers, E. A Multi-Tiered Assessment of Primary Production in Great Salt Lake; Utah Division of Forestry, Fire, and State Lands: Salt Lake City, UT, USA, 2023; p. 49. [Google Scholar]
- Pilati, A.; Wurtsbaugh, W.A. Importance of Zooplankton for the Persistence of a Deep Chlorophyll Layer: A Limnocorral Experiment. Limnol. Oceanogr. 2003, 48, 249–260. [Google Scholar] [CrossRef]
- Standard Methods for the Examination of Water and Wastewater, 23rd ed.; 10200 Plankton; APHA Press: Washington, DC, USA, 2023.
- Crawford, C.J.; Roy, D.P.; Arab, S.; Barnes, C.; Vermote, E.; Hulley, G.; Gerace, A.; Choate, M.; Engebretson, C.; Micijevic, E.; et al. The 50-Year Landsat Collection 2 Archive. Sci. Remote Sens. 2023, 8, 100103. [Google Scholar] [CrossRef]
- Schaaf, C.; Wang, Z. MCD43A4 MODIS/Terra + Aqua BRDF/Albedo Nadir BRDF Adjusted Ref Daily L3 Global—500m V006. Available online: https://lpdaac.usgs.gov/products/mcd43a4v006/ (accessed on 15 November 2024).
- Vermote, E.; Wolfe, R. MOD09GA MODIS/Terra Surface Reflectance Daily L2G Global 1 km and 500 m SIN Grid V006. Available online: https://lpdaac.usgs.gov/products/mod09gav006/ (accessed on 15 November 2024).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Jakovljević, G.; Govedarica, M.; Álvarez-Taboada, F. Waterbody Mapping: A Comparison of Remotely Sensed and GIS Open Data Sources. Int. J. Remote Sens. 2019, 40, 2936–2964. [Google Scholar] [CrossRef]
- Belovsky, G.E.; Stephens, D.; Perschon, C.; Birdsey, P.; Paul, D.; Naftz, D.; Baskin, R.; Larson, C.; Mellison, C.; Luft, J.; et al. The Great Salt Lake Ecosystem (Utah, USA): Long Term Data and a Structural Equation Approach. Ecosphere 2011, 2, art33. [Google Scholar] [CrossRef]
- Brivio, P.A.; Giardino, C.; Zilioli, E. Determination of Chlorophyll Concentration Changes in Lake Garda Using an Image-Based Radiative Transfer Code for Landsat TM Images. Int. J. Remote Sens. 2001, 22, 487–502. [Google Scholar] [CrossRef]
- Han, L.; Jordan, K.J. Estimating and Mapping Chlorophyll-a Concentration in Pensacola Bay, Florida Using Landsat ETM+ Data. Int. J. Remote Sens. 2005, 26, 5245–5254. [Google Scholar] [CrossRef]
- Smith, B.; Pahlevan, N.; Schalles, J.; Ruberg, S.; Errera, R.; Ma, R.; Giardino, C.; Bresciani, M.; Barbosa, C.; Moore, T.; et al. A Chlorophyll-a Algorithm for Landsat-8 Based on Mixture Density Networks. Front. Remote Sens. 2021, 1, 623678. [Google Scholar] [CrossRef]
- Wang, L.; Xu, M.; Liu, Y.; Liu, H.; Beck, R.; Reif, M.; Emery, E.; Young, J.; Wu, Q. Mapping Freshwater Chlorophyll-a Concentrations at a Regional Scale Integrating Multi-Sensor Satellite Observations with Google Earth Engine. Remote Sens. 2020, 12, 3278. [Google Scholar] [CrossRef]
- Markogianni, V.; Kalivas, D.; Petropoulos, G.P.; Dimitriou, E. Estimating Chlorophyll-a of Inland Water Bodies in Greece Based on Landsat Data. Remote Sens. 2020, 12, 2087. [Google Scholar] [CrossRef]
- Buma, W.G.; Lee, S.-I. Evaluation of Sentinel-2 and Landsat 8 Images for Estimating Chlorophyll-a Concentrations in Lake Chad, Africa. Remote Sens. 2020, 12, 2437. [Google Scholar] [CrossRef]
- Xing, X.-G.; Zhao, D.-Z.; Liu, Y.-G.; Yang, J.-H.; Xiu, P.; Wang, L. An Overview of Remote Sensing of Chlorophyll Fluorescence. Ocean Sci. J. 2007, 42, 49–59. [Google Scholar] [CrossRef]
- Kutser, T.; Pierson, D.C.; Kallio, K.Y.; Reinart, A.; Sobek, S. Mapping Lake CDOM by Satellite Remote Sensing. Remote Sens. Environ. 2005, 94, 535–540. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Marcarelli, A.M.; Boyer, G.L. Eutrophication and Metal Concentrations in Three Bays of the Great Salt Lake (USA); Watershed Sciences Faculty Publications: Salt Lake City, UT, USA, 2012; p. 70. [Google Scholar]
- Baxter, B.K.; Litchfield, C.D.; Sowers, K.; Griffith, J.D.; Dassarma, P.A.; Dassarma, S. Microbial Diversity of Great Salt Lake. In Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya; Springer: Berlin/Heidelberg, Germany, 2005; pp. 9–25. [Google Scholar]
- Wurtsbaugh, W.A. The Great Salt Lake Ecosystem (Utah, USA): Long Term Data and a Structural Equation Approach: Comment. Ecosphere 2014, 5, 1–8. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A. Food-Web Modification by an Invertebrate Predator in the Great Salt Lake (USA). Oecologia 1992, 89, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Great Salt Lake Ecosystem Program Algae: A Contributing Factor to the Lake’s Color (and Smell). Available online: https://wildlife.utah.gov/gslep/wildlife/algae.html (accessed on 15 November 2024).
- Adams, H.; Ye, J.; Persaud, B.D.; Slowinski, S.; Kheyrollah Pour, H.; Van Cappellen, P. Rates and Timing of Chlorophyll- a Increases and Related Environmental Variables in Global Temperate and Cold-Temperate Lakes. Earth Syst. Sci. Data 2022, 14, 5139–5156. [Google Scholar] [CrossRef]
- Deng, J.; Chen, F.; Hu, W.; Lu, X.; Xu, B.; Hamilton, D.P. Variations in the Distribution of Chl-a and Simulation Using a Multiple Regression Model. Int. J. Environ. Res. Public Health 2019, 16, 4553. [Google Scholar] [CrossRef] [PubMed]
- Spall, R.E. A Hydrodynamic Model of the Circulation within the South Arm of the Great Salt Lake. Int. J. Model. Simul. 2009, 29, 181–190. [Google Scholar] [CrossRef]
- Crosman, E.T.; Horel, J.D. MODIS-Derived Surface Temperature of the Great Salt Lake. Remote Sens. Environ. 2009, 113, 73–81. [Google Scholar] [CrossRef]
- Lyngsgaard, M.M.; Markager, S.; Richardson, K.; Møller, E.F.; Jakobsen, H.H. How Well Does Chlorophyll Explain the Seasonal Variation in Phytoplankton Activity? Estuaries Coasts 2017, 40, 1263–1275. [Google Scholar] [CrossRef]
- Rae, R.; Vincent, W.F. Phytoplankton Production in Subarctic Lake and River Ecosystems: Development of a Photosynthesis-Temperature-Irradiance Model. J. Plankton Res. 1998, 20, 1293–1312. [Google Scholar] [CrossRef]
- Stephens, D.W.; Gillespie, D.M. Phytoplankton Production in the Great Salt Lake, Utah, and a Laboratory Study of Algal Response to Enrichment1: Production in Great Salt Lake. Limnol. Oceanogr. 1976, 21, 74–87. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A. Iron, Molybdenum and Phosphorus Limitation of N2 Fixation Maintains Nitrogen Deficiency of Plankton in the Great Salt Lake Drainage (Utah, USA). SIL Proc. 1922–2010 1988, 23, 121–130. [Google Scholar] [CrossRef]
- Marcarelli, A.M.; Wurtsbaugh, W.A.; Griset, O. Salinity Controls Phytoplankton Response to Nutrient Enrichment in the Great Salt Lake, Utah, USA. Can. J. Fish. Aquat. Sci. 2006, 63, 2236–2248. [Google Scholar] [CrossRef]
- Ogata, E.M.; Wurtsbaugh, W.A.; Smith, T.N.; Durham, S.L. Bioassay Analysis of Nutrient and Artemia Franciscana Effects on Trophic Interactions in the Great Salt Lake, USA. Hydrobiologia 2017, 788, 1–16. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Epstein, D. Impact of the Farmington Bay Eutrophication Plume on the Plankton Ecology of Gilbert Bay, Great Salt Lake. In Aquatic Ecology Practicum Class Report; College of Natural Resources, Utah State University: Logan, UT, USA, 2011; Volume 41. [Google Scholar]
- Carlson, R.E. A Trophic State Index for Lakes1. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Gliwicz, Z.M. Limnological Control of Brine Shrimp Population Dynamics and Cyst Production in the Great Salt Lake, Utah. In Saline Lakes; Melack, J.M., Jellison, R., Herbst, D.B., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 119–132. ISBN 978-90-481-5995-6. [Google Scholar]
- Fontana, C.G.; Maybruck, V.G.; Billings, R.M.; Mansfeldt, C.B.; Trower, E.J. Modeling the Microbiome of Utah’s Great Salt Lake: A Regression Analysis of Key Abiotic Factors Impacting Growth of Dunaliella Green Algae in the GSL’s South Arm. bioRxiv 2024. [Google Scholar] [CrossRef]
- Leavitt, P.R.; Bunting, L.; Moser, K.; Woodward, C. Effects of Wastewater Influx and Hydrologic Modification on Algal Production in the Great Salt Lake of Utah, USA; The University of Queensland: Brisbane, Australia, 2012. [Google Scholar]
- Gunnell, N.; Nelson, S.; Rushforth, S.; Rey, K.; Hudson, S.M.; Carling, G.; Miller, T.; Meyers, L.; Engstrom, D. From Hypersaline to Fresh-Brackish: Documenting the Impacts of Human Intervention on a Natural Water Body from Cores, Farmington Bay, UT, USA. Water Air Soil Pollut. 2022, 233, 35. [Google Scholar] [CrossRef]
- Byrne, A.; Tebbs, E.J.; Njoroge, P.; Nkwabi, A.; Chadwick, M.A.; Freeman, R.; Harper, D.; Norris, K. Productivity Declines Threaten East African Soda Lakes and the Iconic Lesser Flamingo. Curr. Biol. 2024, 34, 1786–1793.e4. [Google Scholar] [CrossRef]
- King, L.; Devey, M.; Leavitt, P.R.; Power, M.J.; Brothers, S.; Brahney, J. Anthropogenic Forcing Leads to an Abrupt Shift to Phytoplankton Dominance in a Shallow Eutrophic Lake. Freshw. Biol. 2024, 69, 335–350. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Berry, T.S. Cascading Effects of Decreased Salinity on the Plankton Chemistry, and Physics of the Great Salt Lake (Utah). Can. J. Fish. Aquat. Sci. 1990, 47, 100–109. [Google Scholar] [CrossRef]
- Maszczyk, P.; Wurtsbaugh, W.A. Brine Shrimp Grazing and Fecal Production Increase Sedimentation to the Deep Brine Layer (Monimolimnion) of Great Salt Lake, Utah. Hydrobiologia 2017, 802, 7–22. [Google Scholar] [CrossRef]
- Jellison, R.; Melack, J.M. Algal Photosynthetic Activity and Its Response to Meromixis in Hypersaline Mono Lake, California. Limnol. Oceanogr. 1993, 38, 818–837. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, Eutrophication and Harmful Algal Blooms along the Freshwater to Marine Continuum. WIREs Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Conover, M.R.; Bell, M.E. Importance of Great Salt Lake to Pelagic Birds: Eared Grebes, Phalaropes, Gulls, Ducks, and White Pelicans. In Great Salt Lake Biology; Baxter, B.K., Butler, J.K., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 239–262. ISBN 978-3-030-40351-5. [Google Scholar]
- Marden, B.; Brown, P.; Bosteels, T. Great Salt Lake Artemia: Ecosystem Functions and Services with a Global Reach. In Great Salt Lake Biology; Baxter, B.K., Butler, J.K., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 175–237. ISBN 978-3-030-40351-5. [Google Scholar]
- Richards, D.C. Nutrient Atmospheric Deposition on Utah Lake and Great Salt Lake Locations 2020, Including Effects of Sampler Type Statistical Analyses and Results. Ph.D. Thesis, Brigham Young University, Provo, UT, USA, 2021. [Google Scholar]
- Armstrong, T.; Wurtsbaugh, W.A. Impacts of Eutrophication on Benthic Invertebrates & Fish Prey of Birds in Farmington and Bear River Bays of Great Salt Lake; Utah State University: Logan, UT, USA, 2019; p. 41. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramsey, R.D.; Brothers, S.M.; Cobo, M.; Wurtsbaugh, W.A. Spatiotemporal Patterns of Chlorophyll-a Concentration in a Hypersaline Lake Using High Temporal Resolution Remotely Sensed Imagery. Remote Sens. 2025, 17, 430. https://doi.org/10.3390/rs17030430
Ramsey RD, Brothers SM, Cobo M, Wurtsbaugh WA. Spatiotemporal Patterns of Chlorophyll-a Concentration in a Hypersaline Lake Using High Temporal Resolution Remotely Sensed Imagery. Remote Sensing. 2025; 17(3):430. https://doi.org/10.3390/rs17030430
Chicago/Turabian StyleRamsey, R. Douglas, Soren M. Brothers, Melissa Cobo, and Wayne A. Wurtsbaugh. 2025. "Spatiotemporal Patterns of Chlorophyll-a Concentration in a Hypersaline Lake Using High Temporal Resolution Remotely Sensed Imagery" Remote Sensing 17, no. 3: 430. https://doi.org/10.3390/rs17030430
APA StyleRamsey, R. D., Brothers, S. M., Cobo, M., & Wurtsbaugh, W. A. (2025). Spatiotemporal Patterns of Chlorophyll-a Concentration in a Hypersaline Lake Using High Temporal Resolution Remotely Sensed Imagery. Remote Sensing, 17(3), 430. https://doi.org/10.3390/rs17030430