The Impact of Dealiasing Biases on Bird and Insect Data Products of C-Band Weather Radars and Consequences for Aeroecological Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Birds
2.1.1. Radar Data
2.1.2. Data Preparation
Single- and Dual-PRF Velocities
Animal Densities
2.1.3. Data Analysis
Comparison of PRF Modes
Dual-PRF Outliers
2.2. Insects
2.3. Precipitation Cases
2.4. Comparison of vol2bird and FMI Methodology
3. Results
3.1. Single PRF
3.1.1. Birds
3.1.2. Insects
3.2. Dual PRF
3.2.1. Simulations
3.2.2. Birds
3.2.3. Insects
3.2.4. Precipitation
3.3. Comparison of the Dual-PRF FMI Methodology with Single-PRF vol2bird
4. Discussion
4.1. Single PRF
4.1.1. Birds
4.1.2. Insects
4.2. Dual PRF
4.2.1. Birds
4.2.2. Insects
4.2.3. Precipitation
4.3. Comparison of Dual PRF FMI vs. Single PRF in vol2bird
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Gaussian simulator of radial velocity measurements of birds
References
- Chilson, P.B.; Frick, W.F.; Stepanian, P.M.; Shipley, J.R.; Kunz, T.H.; Kelly, J.F. Estimating animal densities in the aerosphere using weather radar: To Z or not to Z? Ecosphere 2012, 3, 1–19. [Google Scholar] [CrossRef]
- Dokter, A.M.; Desmet, P.; Spaaks, J.H.; van Hoey, S.; Veen, L.; Verlinden, L.; Nilsson, C.; Günther Haase, G.; Leijnse, H.; Farnsworth, A.; et al. bioRad: Biological analysis and visualization of weather radar data. Ecography 2019, 42, 852–860. [Google Scholar] [CrossRef]
- Gauthreaux, S.A.; Diehl, R. Discrimination of biological scatterers in polarimetric weather radar data: Opportunities and challenges. Remote Sens. 2020, 12, 545. [Google Scholar] [CrossRef]
- Mäkinen, T.; Ritvanen, J.; Pulkkinen, S.; Weisshaupt, N.; Koistinen, J. Bayesian classification of non-meteorological targets in polarimetric Doppler radar measurements. J. Atmos. Ocean. Technol. 2022, 39, 1561–1578. [Google Scholar] [CrossRef]
- Gauthreaux, S.A. A radar and direct visual study of passerine spring migration in southern Louisiana. Auk 1971, 88, 343–365. [Google Scholar] [CrossRef]
- Fischer, R.A.; Gauthreaux, S.A., Jr.; Valente, J.J.; Guilfoyle, M.P.; Kaller, M.D. Comparing transect survey and WSR-88D radar methods for monitoring daily changes in stopover migrant communities. J. Field Ornithol. 2012, 83, 61–72. [Google Scholar] [CrossRef]
- Farnsworth, A.; Gauthreaux, S.A., Jr.; Blaricom, D.V. A comparison of nocturnal call counts of migrating birds and reflectivity measurements on Doppler radar. J. Avian Biol. 2004, 35, 365–369. [Google Scholar] [CrossRef]
- Liechti, F.; Aschwanden, J.; Blew, J.; Boos, M.; Brabant, R.; Dokter, A.M.; Kosarev, V.; Lukach, M.; Maruri, M.; Reyniers, M.; et al. Cross-calibration of different radar systems for monitoring nocturnal bird migration across Europe and the Near East. Ecography 2019, 42, 887–898. [Google Scholar] [CrossRef]
- Saltikoff, E.; Friedrich, K.; Soderholm, J.; Lengfeld, K.; Nelson, B.; Becker, A.; Hollmann, R.; Urban, B.; Heistermann, M.; Tassone, C. An overview of using weather radar for climatological studies: Successes, challenges, and potential. Bull. Am. Meteorol. Soc. 2019, 100, 1739–1752. [Google Scholar] [CrossRef]
- Weisshaupt, N.; Lehtiniemi, T.; Koistinen, J. Combining citizen science and weather radar data to study large-scale bird movements. IBIS 2021, 163, 728–736. [Google Scholar] [CrossRef]
- Saltikoff, E.; Haase, G.; Delobbe, L.; Gaussiat, N.; Martet, M.; Idziorek, D.; Leijnse, H.; Novák, P.; Lukach, M.; Stephan, K. OPERA the radar project. Atmosphere 2019, 10, 320. [Google Scholar] [CrossRef]
- Desmet, P.; Shamoun-Baranes, J.; Kranstauber, B.; Dokter, A.M.; Weisshaupt, N.; Schmid, B.; Bauer, S.; Haase, G.; Bart Hoekstra, B.; Huybrechts, P.; et al. Biological data derived from European weather radars. Sci. Data, 2025; in revision. [Google Scholar]
- Waldteufel, P.; Corbin, H. On the analysis of single-Doppler radar data. J. Appl. Meteorol. 1978, 18, 532–542. [Google Scholar] [CrossRef]
- Holleman, I. Quality Control and Verification of Weather Radar Wind Profiles. J. Atmos. Ocean. Technol. 2005, 22, 1541–1550. [Google Scholar] [CrossRef]
- Lhermitte, R.M.; Atlas, D. Precipitation motion by pulse Doppler Radar. In Proceedings of the Ninth Weather Radar Conference, Kansas City, MO, USA, 23–26 October 1961; pp. 218–223. [Google Scholar]
- Browning, K.A.; Wexler, R. The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteorol. Climatol. 1968, 7, 105–113. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C: The Art of Scientic Computing, 2nd ed.; Cambridge University Press: New York, NY, USA, 1992; p. 994. [Google Scholar]
- Dokter, A.M.; Liechti, F.; Stark, H.; Delobbe, L.; Tabary, P.; Holleman, I. Bird migration flight altitudes studied by a network of operational weather radars. J. R. Soc. Interface 2010, 8, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Dokter, A.M.; Farnsworth, A.; Fink, D.; Ruiz-Gutierrez, V.; Hochachka, W.M.; La Sorte, F.A.; Robinson, O.J.; Rosenberg, K.V.; Kelling, S. Seasonal abundance and survival of North America’s migratory avifauna determined by weather radar. Nat. Ecol. Evol. 2018, 2, 1603–1609. [Google Scholar] [CrossRef]
- Nilsson, C.; Dokter, A.M.; Verlinden, L.; Shamoun-Baranes, J.; Schmid, B.; Desmet, P.; Bauer, S.; Chapman, J.; Alves, J.A.; Stepanian, P.M.; et al. Revealing patterns of nocturnal migration using the European weather radar network. Ecography 2018, 42, 876–886. [Google Scholar] [CrossRef]
- Rosenberg, K.V.; Dokter, A.M.; Blancher, P.J.; Sauer, J.R.; Smith, A.C.; Smith, P.A.; Stanton, J.C.; Panjabi, A.; Helft, L.; Parr, M.; et al. Decline of the North American avifauna. Science 2019, 366, 120–124. [Google Scholar] [CrossRef]
- Feldmann, M.; James, C.N.; Boscacci, M.; Leuenberger, D.; Gabella, M.; Germann, U.; Wolfensberger, D.; Berne, A. R2D2: A Region-Based Recursive Doppler Dealiasing Algorithm for Operational Weather Radar. J. Atmos. Ocean. Technol. 2020, 37, 2341–2356. [Google Scholar] [CrossRef]
- Bergen, W.R.; Albers, S.C. Two- and three-dimensional de-aliasing of Doppler radar velocities. J. Atmos. Ocean. Technol. 1988, 5, 305–319. [Google Scholar] [CrossRef]
- Wüest, M.; Germann, U.; Schmid, W. A variational de-aliasing technique. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 2000, 25, 1179–1183. [Google Scholar] [CrossRef]
- Holleman, I.; Beekhuis, H. Analysis and correction of dual PRF velocity data. J. Atmos. Ocean. Technol. 2003, 20, 443–453. [Google Scholar] [CrossRef]
- Weisshaupt, N.; Koistinen, J. Dealiasing of radial velocities based on interleaved dual-PRF measurements and bin-based polarimetric echo classification. In Proceedings of the 3rd International Radar Aeroecology Conference, Davos, Switzerland, 25–26 June 2022. [Google Scholar]
- Bruderer, B.; Boldt, A. Flight characteristics of birds: I. Radar measurements of speeds. IBIS 2001, 143, 178–204. [Google Scholar] [CrossRef]
- Battan, L.J. Radar Observation of the Atmosphere; The University of Chicago Press: Chicago, IL, USA; London, UK, 1973; 324p. [Google Scholar]
- Haase, G.; Landelius, T. Dealiasing of Doppler Radar Velocities Using a Torus Mapping. J. Atmos. Ocean. Technol. 2004, 21, 1566–1573. [Google Scholar] [CrossRef]
- Joe, P.; May, P.T. Correction of Dual PRF Velocity Errors for Operational Doppler Weather Radars. J. Atmos. Ocean. Technol. 2003, 20, 429–442. [Google Scholar] [CrossRef]
- Dazhang, T.; Geotis, S.G.; Passarelli., R.E., Jr.; Hansen, A.L.; Frush, C.L. Evaluation of an alternating-PRF method for extending the range of unambiguous Doppler velocity. In Proceedings of the 22nd Conference on Radar Meteorology, Zurich, Switzerland, 10–13 September 1984; American Meteorological Society: Boston, MA, USA, 1984; pp. 523–527. [Google Scholar]
- Jorgensen, D.P.; Shepherd, T.R.; Goldstein, A.S. A Dual-Pulse Repetition Frequency Scheme for Mitigating Velocity Ambiguities of the NOAA P-3 Airborne Doppler Radar. J. Atmos. Ocean. Technol. 2000, 17, 585–594. [Google Scholar] [CrossRef]
- Altube, P.; Bech, J.; Argemí, O.; Rigo, T.; Pineda, N.; Collis, S.; Helmus, J. Correction of Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing. J. Atmos. Ocean. Technol. 2017, 34, 1529–1543. [Google Scholar] [CrossRef]
- Achtemeier, G.L. The Use of Insects as Tracers for “Clear-Air” Boundary-Layer Studies by Doppler Radar. J. Atmos. Ocean. Technol. 1991, 8, 746–765. [Google Scholar] [CrossRef]
- Wainwright, C.E.; Stepanian, P.M.; Reynolds, D.R. The movement of small insects in the convective boundary layer: Linking patterns to processes. Sci. Rep. 2017, 7, 5438. [Google Scholar] [CrossRef]
- Tabary, P.; Scialom, G.; Germann, U. Real-time retrieval of the wind from aliased velocities measured by Doppler radars. J. Atmos. Ocean. Technol. 2001, 18, 875–882. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 1 October 2024).
- Etling, D.; Brown, R.A. Roll vortices in the planetary boundary layer: A review. Bound-Layer Meteorol. 1993, 65, 215–248. [Google Scholar] [CrossRef]
- Geerts, B.; Miao, Q. Airborne Radar Observations of the Flight Behavior of Small Insects in the Atmospheric Convective Boundary Layer. Environ. Entomol. 2005, 34, 361–377. [Google Scholar] [CrossRef]
- Nussbaumer, R.; Schmid, B.; Bauer, S.; Liechti, F. A Gaussian Mixture Model to Separate Birds and Insects in Single-Polarization Weather Radar Data. Remote Sens. 2021, 13, 1989. [Google Scholar] [CrossRef]
- Nussbaumer, R.; Benoit, L.; Mariethoz, G.; Liechti, F.; Bauer, S.; Schmid, B. A Geostatistical Approach to Estimate High Resolution Nocturnal Bird Migration Densities from a Weather Radar Network. Remote Sens. 2019, 11, 2233. [Google Scholar] [CrossRef]
- EUMETNET. Available online: https://www.eumetnet.eu/activities/observations-programme/current-activities/opera/ (accessed on 12 November 2024).
- Liechti, F.; Bauer, S.; Dhanjal-Adams, K.L.; Emmenegger, T.; Zehtindjiev, P.; Hahn, S. Miniaturized multi-sensor loggers provide new insight into year-round flight behaviour of small trans-Sahara avian migrants. Mov. Ecol. 2018, 6, 19. [Google Scholar] [CrossRef]
Single PRF | Dual PRF | ||||
---|---|---|---|---|---|
PRF [Hz] | 570 | 753 | 1130 | 1507 | 900/1200 |
Nyquist velocity [m s−1] | 7.6 | 10 | 15 | 20 | 48 (11.93, 15.90) |
Pulse length [μs] | 2.0 | 1.0 | 0.8 | 0.5 | - |
PRF Mode | Autumn 2023 | Spring 2024 | ||
---|---|---|---|---|
untreated | HL | untreated | HL | |
570/dual PRF | 0.11 | 0.30 | 0.10 | 0.15 |
753/dual PRF | 0.25 | 0.60 | 0.30 | 0.52 |
1130/dual PRF | 0.64 | 1.10 | 0.75 | 1.16 |
1507/dual PRF | 0.95 | 1.19 | 1.11 | 1.32 |
570/dual PRF FMI | 0.07 | 0.25 | 0.06 | 0.10 |
753/dual PRF FMI | 0.17 | 0.50 | 0.18 | 0.31 |
1130/dual PRF FMI | 0.49 | 0.90 | 0.45 | 0.70 |
1507/dual PRF FMI | 0.78 | 0.96 | 0.64 | 0.67 |
Dual PRF/dual PRF FMI | 0.83 | - | 0.56 | - |
PRF Mode | Autumn 2023 | Spring 2024 | ||
---|---|---|---|---|
untreated | HL | untreated | HL | |
570/dual PRF | 0.53 | 1.01 | 0.54 | 0.89 |
753/dual PRF | 0.76 | 1.01 | 0.96 | 1.04 |
1130/dual PRF | 0.94 | 1.01 | 0.89 | 0.97 |
1507/dual PRF | 0.91 | 1.01 | 0.97 | 0.99 |
Year | Radar Site | Spearman’s rho | F | R2 | p-Value | n |
---|---|---|---|---|---|---|
2022 | Anjalankoski | 0.93 | 135.79 | 0.83 | <0.001 | 30 |
Kankaanpää | 0.85 | 8.87 | 0.37 | <0.001 | 17 | |
Kesälahti | 0.91 | 225.61 | 0.89 | <0.001 | 30 | |
Korppoo | 0.84 | 133.66 | 0.83 | <0.001 | 30 | |
Kuopio | 0.94 | 52.66 | 0.65 | <0.001 | 30 | |
Nurmes | 0.87 | 100.87 | 0.78 | <0.001 | 30 | |
Petäjävesi | 0.65 | 31.79 | 0.53 | <0.001 | 30 | |
Utajärvi | 0.82 | 7.09 | 0.20 | <0.001 | 30 | |
Vihti | 0.79 | 40.67 | 0.59 | <0.001 | 30 | |
Vimpeli | 0.90 | 134.96 | 0.83 | <0.001 | 30 | |
2023 | Kankaanpää | 0.97 | 114.56 | 0.92 | <0.001 | 12 |
2024 | Kankaanpää | 0.73 | 46.08 | 0.77 | <0.001 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weisshaupt, N.; Harnist, B.; Koistinen, J. The Impact of Dealiasing Biases on Bird and Insect Data Products of C-Band Weather Radars and Consequences for Aeroecological Applications. Remote Sens. 2025, 17, 436. https://doi.org/10.3390/rs17030436
Weisshaupt N, Harnist B, Koistinen J. The Impact of Dealiasing Biases on Bird and Insect Data Products of C-Band Weather Radars and Consequences for Aeroecological Applications. Remote Sensing. 2025; 17(3):436. https://doi.org/10.3390/rs17030436
Chicago/Turabian StyleWeisshaupt, Nadja, Bent Harnist, and Jarmo Koistinen. 2025. "The Impact of Dealiasing Biases on Bird and Insect Data Products of C-Band Weather Radars and Consequences for Aeroecological Applications" Remote Sensing 17, no. 3: 436. https://doi.org/10.3390/rs17030436
APA StyleWeisshaupt, N., Harnist, B., & Koistinen, J. (2025). The Impact of Dealiasing Biases on Bird and Insect Data Products of C-Band Weather Radars and Consequences for Aeroecological Applications. Remote Sensing, 17(3), 436. https://doi.org/10.3390/rs17030436