Mapping Bedrock Outcrops in the Sierra Nevada Mountains (California, USA) Using Machine Learning
Abstract
:1. Introduction
2. Data
2.1. Study Area
2.2. Remote Sensing Images
Training Data
2.3. National Land Cover Database
3. Methods
3.1. Machine Learning Training and Implementation
3.2. Comparison with NLCD
3.2.1. Sites with Reference Data
3.2.2. Entire Sierra Nevada
4. Results and Discussion
4.1. Machine Learning Training
4.2. Comparison with NLCD
4.2.1. Sites with Reference Data
4.2.2. Entire Sierra Nevada
4.3. Implications and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petliak, H.; Cerovski-Darriau, C.; Zaliva, V.; Stock, J. Where’s the Rock: Using Convolutional Neural Networks to Improve Land Cover Classification. Remote Sens. 2019, 11, 2211. [Google Scholar] [CrossRef]
- Ganerød, A.J.; Bakkestuen, V.; Calovi, M.; Fredin, O.; Rød, J.K. Where Are the Outcrops? Automatic Delineation of Bedrock from Sediments Using Deep-Learning Techniques. Appl. Comput. Geosci. 2023, 18, 100119. [Google Scholar] [CrossRef]
- Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine Learning in Geosciences and Remote Sensing. Geosci. Front. 2016, 7, 3–10. [Google Scholar] [CrossRef]
- Wickham, J.; Stehman, S.V.; Sorenson, D.G.; Gass, L.; Dewitz, J.A. Thematic Accuracy Assessment of the NLCD 2016 Land Cover for the Conterminous United States. Remote Sens. Environ. 2021, 257, 112357. [Google Scholar] [CrossRef] [PubMed]
- Hillier, J.K.; Smith, M.J.; Armugam, R.; Barr, I.; Boston, C.M.; Clark, C.D.; Ely, J.; Fankl, A.; Greenwood, S.L.; Gosselin, L.; et al. Manual Mapping of Drumlins in Synthetic Landscapes to Assess Operator Effectiveness. J. Maps 2015, 11, 719–729. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide Inventory Maps: New Tools for an Old Problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Odom, W.; Doctor, D. Rapid Estimation of Minimum Depth-to-Bedrock from Lidar Leveraging Deep-Learning-Derived Surficial Material Maps. Appl. Comput. Geosci. 2023, 18, 100116. [Google Scholar] [CrossRef]
- van der Meij, W.M.; Meijles, E.W.; Marcos, D.; Harkema, T.T.L.; Candel, J.H.J.; Maas, G.J. Comparing Geomorphological Maps Made Manually and by Deep Learning. Earth Surf. Process. Landf. 2022, 47, 1089–1107. [Google Scholar] [CrossRef]
- Zhang, C.; Sargent, I.; Pan, X.; Li, H.; Gardiner, A.; Hare, J.; Atkinson, P.M. Joint Deep Learning for Land Cover and Land Use Classification. Remote Sens. Environ. 2019, 221, 173–187. [Google Scholar] [CrossRef]
- Zhang, P.; Ke, Y.; Zhang, Z.; Wang, M.; Li, P.; Zhang, S. Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery. Sensors 2018, 18, 3717. [Google Scholar] [CrossRef] [PubMed]
- Al-Najjar, H.A.H.; Kalantar, B.; Pradhan, B.; Saeidi, V.; Halin, A.A.; Ueda, N.; Mansor, S. Land Cover Classification from Fused DSM and UAV Images Using Convolutional Neural Networks. Remote Sens. 2019, 11, 1461. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine Learning in Modelling Land-Use and Land Cover-Change (LULCC): Current Status, Challenges and Prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef] [PubMed]
- Heydari, S.S.; Mountrakis, G. Meta-Analysis of Deep Neural Networks in Remote Sensing: A Comparative Study of Mono-Temporal Classification to Support Vector Machines. ISPRS J. Photogramm. Remote Sens. 2019, 152, 192–210. [Google Scholar] [CrossRef]
- Leverington, D.W.; Moon, W.M. Landsat-TM-Based Discrimination of Lithological Units Associated with the Purtuniq Ophiolite, Quebec, Canada. Remote Sens. 2012, 4, 1208–1231. [Google Scholar] [CrossRef]
- Kahle, A.B.; Gillespie, A.R. Thermal Inertia Imaging: A New Geologic Mapping Tool. Geophys. Res. Lett. 1976, 3, 26–28. [Google Scholar] [CrossRef]
- Asano, Y.; Yamaguchi, Y.; Kodama, S. Geological Mapping by Thermal Inertia Derived from Long-Term Maximum and Minimum Temperatures in ASTER Data. Q. J. Eng. Geol. Hydrogeol. 2022, 56, 1–9. [Google Scholar] [CrossRef]
- Cracknell, M.J.; Reading, A.M. Geological Mapping Using Remote Sensing Data: A Comparison of Five Machine Learning Algorithms, Their Response to Variations in the Spatial Distribution of Training Data and the Use of Explicit Spatial Information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef]
- Scarpone, C.; Schmidt, M.G.; Bulmer, C.E.; Knudby, A. Semi-Automated Classification of Exposed Bedrock Cover in British Columbia’s Southern Mountains Using a Random Forest Approach. Geomorphology 2017, 285, 214–224. [Google Scholar] [CrossRef]
- Shastry, A.; Carter, E.; Coltin, B.; Sleeter, R.; McMichael, S.; Eggleston, J. Mapping Floods from Remote Sensing Data and Quantifying the Effects of Surface Obstruction by Clouds and Vegetation. Remote Sens. Environ. 2023, 291, 113556. [Google Scholar] [CrossRef]
- NASA. DELTA (Deep Earth Learning, Tools, and Analysis); NASA Ames Intelligent Robotics Group: Moffett Field, CA, USA, 2021.
- Buscombe, D.; Ritchie, A.C. Landscape Classification with Deep Neural Networks. Geosciences 2018, 8, 244. [Google Scholar] [CrossRef]
- Shastry, A.; Cerovski-Darriau, C. Data from “Mapping Bedrock Outcrops in the Sierra Nevada Mountains (California, USA) Using Machine Learning”: U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2023. [CrossRef]
- Jin, S.; Homer, C.; Yang, L.; Danielson, P.; Dewitz, J.; Li, C.; Zhu, Z.; Xian, G.; Howard, D. Overall Methodology Design for the United States National Land Cover Database 2016 Products. Remote Sens. 2019, 11, 2971. [Google Scholar] [CrossRef]
- Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; et al. A New Generation of the United States National Land Cover Database: Requirements, Research Priorities, Design, and Implementation Strategies. ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [Google Scholar] [CrossRef]
- Homer, C.; Dewitz, J.; Jin, S.; Xian, G.; Costello, C.; Danielson, P.; Gass, L.; Funk, M.; Wickham, J.; Stehman, S.; et al. Conterminous United States Land Cover Change Patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS J. Photogramm. Remote Sens. 2020, 162, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Perone, C.S.; Calabrese, E.; Cohen-Adad, J. Spinal Cord Gray Matter Segmentation Using Deep Dilated Convolutions. Sci. Rep. 2018, 8, 5966. [Google Scholar] [CrossRef] [PubMed]
- Rafique, M.U.; Zhu, J.; Jacobs, N. Automatic Segmentation of Sinkholes Using a Convolutional Neural Network. Earth Sp. Sci. 2022, 9, e2021EA002195. [Google Scholar] [CrossRef]
- Pei, J.; Wang, L.; Huang, N.; Geng, J.; Cao, J.; Niu, Z. Analysis of Landsat-8 OLI Imagery for Estimating Exposed Bedrock Fractions in Typical Karst Regions of Southwest China Using a Karst Bare-Rock Index. Remote Sens. 2018, 10, 1321. [Google Scholar] [CrossRef]
- Ruan, O.; Liu, S.; Zhou, X.; Luo, J.; Hu, H.; Yin, X.; Yuan, N. LANDSAT Multispectral Image Analysis of Bedrock Exposure Rate in Highly Heterogeneous Karst Areas through Mixed Pixel Decomposition Considering Spectral Variability. Land Degrad. Dev. 2023, 34, 2880–2895. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Zhang, F.; Dong, Y.; Song, Z.; Liu, G. Remote Sensing for Lithology Mapping in Vegetation-Covered Regions: Methods, Challenges, and Opportunities. Minerals 2023, 13, 1153. [Google Scholar] [CrossRef]
- Hahm, W.J.; Riebe, C.S.; Lukens, C.E.; Araki, S. Bedrock Composition Regulates Mountain Ecosystems and Landscape Evolution. Proc. Natl. Acad. Sci. USA 2014, 111, 3338–3343. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shastry, A.; Cerovski-Darriau, C.; Coltin, B.; Stock, J.D. Mapping Bedrock Outcrops in the Sierra Nevada Mountains (California, USA) Using Machine Learning. Remote Sens. 2025, 17, 457. https://doi.org/10.3390/rs17030457
Shastry A, Cerovski-Darriau C, Coltin B, Stock JD. Mapping Bedrock Outcrops in the Sierra Nevada Mountains (California, USA) Using Machine Learning. Remote Sensing. 2025; 17(3):457. https://doi.org/10.3390/rs17030457
Chicago/Turabian StyleShastry, Apoorva, Corina Cerovski-Darriau, Brian Coltin, and Jonathan D. Stock. 2025. "Mapping Bedrock Outcrops in the Sierra Nevada Mountains (California, USA) Using Machine Learning" Remote Sensing 17, no. 3: 457. https://doi.org/10.3390/rs17030457
APA StyleShastry, A., Cerovski-Darriau, C., Coltin, B., & Stock, J. D. (2025). Mapping Bedrock Outcrops in the Sierra Nevada Mountains (California, USA) Using Machine Learning. Remote Sensing, 17(3), 457. https://doi.org/10.3390/rs17030457