Preliminary Assessment of the Impact of the Copernicus Imaging Microwave Radiometer (CIMR) on the Copernicus Mediterranean Sea Surface Temperature L4 Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. OSSE Overview
- The L3S IR SSTs currently used to derive the Mediterranean L4 HR SST product;
- The expected future CIMR SSTs, provided as daily collated (L3C) datasets.
- Using the L3S IR SSTs only in operation-like processing;
- Using the combined L3S IR+CIMR SSTs.
2.2. Reference Model SST
2.3. Data
- Mediterranean Sea L3S HR SSTs from the Copernicus Marine Service (https://doi.org/10.48670/moi-00171, accessed on 24 August 2024), which is the satellite-derived dataset mentioned in Section 1, used to derive the operational L4 HR analyses. It is produced by combining SST data from multiple IR sensors, and therefore the data have gaps in correspondence from unavailable IR retrievals due to, for example, cloud coverage or low-quality SST data in the single sensor images. The aforementioned data gaps were applied to the reference model SSTs with the aim of simulating the cloud mask into the synthetic IR observations.
- For the application of noise to the synthetic L3S IR SSTs, we used the uncorrelated uncertainties of the Sea and Land Surface Temperature Radiometer (SLSTR) L3C product from the ESA SST Climate Change Initiative (CCI) (https://dx.doi.org/10.5285/a104ed92bddd4c56b11127d4cc49b8d4, accessed on 19 May 2024), provided as daily datasets on a regular 0.05° grid. The uncorrelated uncertainties are a component of the total uncertainty of the SLSTR SSTs, arising from radiometric noise in the observations [23].
- Half-hourly precipitation rates from the Integrated Multi-satellitE Retrievals for GPM (IMERG) [24] were used to apply a precipitation mask to the synthetic L3C CIMR SSTs. This product provides global estimates of precipitation, merging data from the PMW sensors comprising the Global Precipitation Measurement (GPM) constellation with IR satellite estimates and precipitation gauge analyses, which are combined in 0.1° × 0.1° half-hourly datasets.
- The application of noise to the synthetic L3C CIMR SSTs relied on the ERA5 hourly reanalysis [25] of the ocean wind speed (OWS), total cloud water vapor (TCWV), and total cloud liquid water (TCLW). ERA5 is the fifth-generation atmospheric reanalysis of the global climate produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) which covers the period from 1940 to the present. Data are distributed on a global grid of 0.25°.
- For the same purpose, daily SSS outputs were extracted from the Copernicus model used to derive the reference SSTs.
2.4. Synthetic L3S IR SSTs
- We first computed the cumulative distribution function of the SLSTR L3C SST uncertainties (Figure 3);
- For each grid cell, we derived a random sample from a uniform distribution within the range [0, 1];
- Each sample was used to extract uncertainty values from the distribution function;
- Finally, Gaussian noise was computed using the uncertainty values as standard deviation, subsequently adding the noise to the synthetic L3S SSTs.
2.5. Synthetic L3C CIMR SSTs
2.6. Synthetic L3S IR+CIMR SST: Merging Method
2.7. Description of the Optimal Interpolation Scheme
3. Results
3.1. Qualitative Validation
3.2. Quantitative Validation
3.2.1. Mean Error
3.2.2. Root Mean Square Error
4. Discussion and Conclusions
- The study of the CIMR’s impact on the reconstruction of SST spatial gradients from space-born sensors in the Mediterranean Area. SST gradients are indeed quantities with several implications on ocean dynamics [29] and air–sea interactions [34]. The preliminary OSSE results for the Mediterranean SST field reconstruction exhibited higher dynamical consistency with the introduction of CIMR SSTs (Section 3) instead of only using IR SSTs. A thorough assessment of the SST gradients obtained by combining the CIMR (or other PMW SSTs) and IR will thus be quantified in future works.
- The impact of ingesting MW SSTs within the current operational Mediterranean satellite SST processing chain could rely on the ingestion of data from existing PMW sensors, such as the AMSR-2 on board the GCOM-W1 satellite (https://www.ospo.noaa.gov/products/atmosphere/gpds/about_amsr2.html, accessed on 23 July 2024). Given that satellite SSTs are representative of the thermal radiance emerging from the top few micrometers (IR range) and the top few millimeters (MW range), the use of MW data will require the application of a depth adjustment (see, for example, [23]). Moreover, the optimal IR and MW SST merging technique should be investigated.
- The possibility of modifying the OI scheme and using the MW SST to build up daily gap-free nighttime SST fields to be used as a first guess in the OI scheme, as suggested by Marullo et al. [35], should be evaluated.
- The conduction of feasibility studies, as well as the application to real ocean observations, to quantify the CIMR’s impact on the L4 SST mapping for other regional enclosed basins (e.g., the Black Sea), where the average cloud cover is significantly higher than in the Mediterranean area [36].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Malanotte-Rizzoli, P.; Artale, V.; Borzelli-Eusebi, G.L.; Brenner, S.; Crise, A.; Gacic, M.; Kress, N.; Marullo, S.; Ribera d’Alcalà, M.; Sofianos, S.; et al. Physical forcing and physical/biochemical variability of the Mediterranean Sea: A review of unresolved issues and directions for future research. Ocean Sci. 2014, 10, 281–322. [Google Scholar] [CrossRef]
- Robinson, A.R.; Golnaraghi, M. The Physical and Dynamical Oceanography of the Mediterranean Sea. In Ocean Processes in Climate Dynamics: Global and Mediterranean Examples; Malanotte-Rizzoli, P., Robinson, A.R., Eds.; Springer: Dordrecht, The Netherlands, 1994; pp. 255–306. [Google Scholar] [CrossRef]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Pisano, A.; Marullo, S.; Artale, V.; Falcini, F.; Yang, C.; Leonelli, F.E.; Santoleri, R.; Buongiorno Nardelli, B. New evidence of Mediterranean climate change and variability from sea surface temperature observations. Remote Sens. 2020, 12, 132. [Google Scholar] [CrossRef]
- Marullo, S.; Serva, F.; Iacono, R.; Napolitano, E.; di Sarra, A.; Meloni, D.; Monteleone, F.; Sferlazzo, D.; De Silvestri, L.; de Toma, V.; et al. Record-breaking persistence of the 2022/23 marine heatwave in the Mediterranean Sea. Environ. Res. Lett. 2023, 18, 114041. [Google Scholar] [CrossRef]
- Avolio, E.; Fanelli, C.; Pisano, A.; Miglietta, M. Unveiling the relationship between Mediterranean tropical-like cyclones and rising Sea Surface Temperature. Geophys. Res. Lett. 2024, 51, e2024GL109921. [Google Scholar] [CrossRef]
- Le Traon, P.Y.; Reppucci, A.; Alvarez Fanjul, E.; Aouf, L.; Behrens, A.; Belmonte, M.; Bentamy, A.; Bertino, L.; Brando, V.E.; Kreiner, M.B.; et al. From observation to information and users: The Copernicus Marine Service perspective. Front. Mar. Sci. 2019, 6, 234. [Google Scholar] [CrossRef]
- Buongiorno Nardelli, B.; Tronconi, C.; Pisano, A.; Santoleri, R. High and Ultra-High resolution processing of satellite Sea Surface Temperature data over Southern European Seas in the framework of MyOcean project. Remote Sens. Environ. 2013, 129, 1–16. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Folland, C.K.; Parker, D.E. Biases in satellite-derived sea-surface-temperature data. Nature 1989, 341, 728–731. [Google Scholar] [CrossRef]
- Reynolds, R.W. Impact of Mount Pinatubo aerosols on satellite-derived sea surface temperatures. J. Clim. 1993, 6, 768–774. [Google Scholar] [CrossRef]
- Nielsen-Englyst, P.; Høyer, J.L.; Karagali, I.; Kolbe, W.M.; Tonboe, R.T.; Pedersen, L.T. Impact of microwave observations on the estimation of Arctic sea surface temperatures. Remote Sens. Environ. 2024, 301, 113949. [Google Scholar] [CrossRef]
- Nielsen-Englyst, P.; L. Høyer, J.; Toudal Pedersen, L.; L. Gentemann, C.; Alerskans, E.; Block, T.; Donlon, C. Optimal estimation of sea surface temperature from AMSR-E. Remote Sens. 2018, 10, 229. [Google Scholar] [CrossRef]
- Pearson, K.; Merchant, C.; Embury, O.; Donlon, C. The role of advanced microwave scanning radiometer 2 channels within an optimal estimation scheme for sea surface temperature. Remote Sens. 2018, 10, 90. [Google Scholar] [CrossRef]
- Good, S.; Fiedler, E.; Mao, C.; Martin, M.J.; Maycock, A.; Reid, R.; Roberts-Jones, J.; Searle, T.; Waters, J.; While, J.; et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 2020, 12, 720. [Google Scholar] [CrossRef]
- Donlon, C.; Galeazzi, C.; Midthassel, R.; Sallusti, M.; Triggianese, M.; Fiorelli, B.; De Paris, G.; Kornienko, A.; Khlystova, I. The Copernicus Imaging Microwave Radiometer (CIMR): Mission Overview and Status. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 989–992. [Google Scholar] [CrossRef]
- Donlon, C. Copernicus Imaging Microwave Radiometer (CIMR) Mission Requirements Document, Version 5.0. 2023. Available online: https://esamultimedia.esa.int/docs/EarthObservation/CIMR-MRD-v5.0-20230211_(Issued).pdf (accessed on 4 November 2024).
- Arnold, C.P., Jr.; Dey, C.H. Observing-systems simulation experiments: Past, present, and future. Bull. Am. Meteorol. Soc. 1986, 67, 687–695. [Google Scholar] [CrossRef]
- Chen, K.; Suo, Z.; Han, W.; Cai, B. OSSEs on the FY-4M Geostationary Microwave Satellite Based on CMA-GFS and CMA-MESO. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5302819. [Google Scholar] [CrossRef]
- Posselt, D.J.; Wu, L.; Schreier, M.; Roman, J.; Minamide, M.; Lambrigtsen, B. Assessing the Forecast Impact of a Geostationary Microwave Sounder Using Regional and Global OSSEs. Mon. Weather Rev. 2022, 150, 625–645. [Google Scholar] [CrossRef]
- Rivoire, L.; Marty, R.; Carrel-Billiard, T.; Chambon, P.; Fourrié, N.; Audouin, O.; Martet, M.; Birman, C.; Accadia, C.; Ackermann, J. A global observing-system simulation experiment for the EPS–Sterna microwave constellation. Q. J. R. Meteorol. Soc. 2024, 150, 2991–3012. [Google Scholar] [CrossRef]
- Pearson, K.; Good, S.; Merchant, C.J.; Prigent, C.; Embury, O.; Donlon, C. Sea surface temperature in global analyses: Gains from the Copernicus Imaging Microwave Radiometer. Remote Sens. 2019, 11, 2362. [Google Scholar] [CrossRef]
- Ciani, D.; Santoleri, R.; Liberti, G.L.; Prigent, C.; Donlon, C.; Buongiorno Nardelli, B. Copernicus Imaging Microwave Radiometer (CIMR) Benefits for the Copernicus Level 4 Sea-Surface Salinity Processing Chain. Remote Sens. 2019, 11, 1818. [Google Scholar] [CrossRef]
- Embury, O.; Merchant, C.J.; Good, S.A.; Rayner, N.A.; Høyer, J.L.; Atkinson, C.; Block, T.; Alerskans, E.; Pearson, K.J.; Worsfold, M.; et al. Satellite-based time-series of sea-surface temperature since 1980 for climate applications. Sci. Data 2024, 11, 326. [Google Scholar] [CrossRef] [PubMed]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J.; et al. Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). In Satellite Precipitation Measurement: Volume 1; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 343–353. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kilic, L.; Prigent, C.; Aires, F.; Boutin, J.; Heygster, G.; Tonboe, R.T.; Roquet, H.; Jimenez, C.; Donlon, C. Expected performances of the Copernicus Imaging Microwave Radiometer (CIMR) for an all-weather and high spatial resolution estimation of ocean and sea ice parameters. J. Geophys. Res. Ocean. 2018, 123, 7564–7580. [Google Scholar] [CrossRef]
- Escudier, R.; Clementi, E.; Cipollone, A.; Pistoia, J.; Drudi, M.; Grandi, A.; Lyubartsev, V.; Lecci, R.; Aydogdu, A.; Delrosso, D.; et al. A High Resolution Reanalysis for the Mediterranean Sea. Front. Earth Sci. 2021, 9, 702285. [Google Scholar] [CrossRef]
- Marullo, S.; Buongiorno Nardelli, B.; Guarracino, M.; Santoleri, R. Observing the Mediterranean Sea from space: 21 years of Pathfinder-AVHRR sea surface temperatures (1985 to 2005): Re-analysis and validation. Ocean Sci. 2007, 3, 299–310. [Google Scholar] [CrossRef]
- Rio, M.H.; Santoleri, R. Improved global surface currents from the merging of altimetry and sea surface temperature data. Remote Sens. Environ. 2018, 216, 770–785. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Hilburn, K.A. In situ validation of sea surface temperatures from the GCOM-W 1 AMSR 2 RSS calibrated brightness temperatures. J. Geophys. Res. Ocean. 2015, 120, 3567–3585. [Google Scholar] [CrossRef]
- Maeda, K.; Shibata, A.; Imaoka, K. Protection of 6–7 GHZ band spaceborne microwave radiometer from interferences to derive sea surface temperature and others. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 4217–4220. [Google Scholar] [CrossRef]
- Soldo, Y.; Le Vine, D.M.; De Matthaeis, P.; Richaume, P. L-band RFI detected by SMOS and Aquarius. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4220–4235. [Google Scholar] [CrossRef]
- Kilpatrick, K.A.; Podestá, G.; Williams, E.; Walsh, S.; Minnett, P.J. Alternating decision trees for cloud masking in MODIS and VIIRS NASA sea surface temperature products. J. Atmos. Ocean. Technol. 2019, 36, 387–407. [Google Scholar] [CrossRef]
- Woollings, T.; Hoskins, B.; Blackburn, M.; Hassell, D.; Hodges, K. Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model. Clim. Dyn. 2010, 35, 341–353. [Google Scholar] [CrossRef]
- Marullo, S.; Santoleri, R.; Banzon, V.; Evans, R.; Guarracino, M. A diurnal-cycle resolving sea surface temperature product for the tropical Atlantic. J. Geophys. Res. Ocean. 2010, 115, C05011. [Google Scholar] [CrossRef]
- González-Haro, C.; Ponte, A.; Autret, E. Quantifying tidal fluctuations in remote sensing infrared sst observations. Remote Sens. 2019, 11, 2313. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabatini, M.; Pisano, A.; Fanelli, C.; Buongiorno Nardelli, B.; Liberti, G.L.; Santoleri, R.; Donlon, C.; Ciani, D. Preliminary Assessment of the Impact of the Copernicus Imaging Microwave Radiometer (CIMR) on the Copernicus Mediterranean Sea Surface Temperature L4 Analyses. Remote Sens. 2025, 17, 462. https://doi.org/10.3390/rs17030462
Sabatini M, Pisano A, Fanelli C, Buongiorno Nardelli B, Liberti GL, Santoleri R, Donlon C, Ciani D. Preliminary Assessment of the Impact of the Copernicus Imaging Microwave Radiometer (CIMR) on the Copernicus Mediterranean Sea Surface Temperature L4 Analyses. Remote Sensing. 2025; 17(3):462. https://doi.org/10.3390/rs17030462
Chicago/Turabian StyleSabatini, Mattia, Andrea Pisano, Claudia Fanelli, Bruno Buongiorno Nardelli, Gian Luigi Liberti, Rosalia Santoleri, Craig Donlon, and Daniele Ciani. 2025. "Preliminary Assessment of the Impact of the Copernicus Imaging Microwave Radiometer (CIMR) on the Copernicus Mediterranean Sea Surface Temperature L4 Analyses" Remote Sensing 17, no. 3: 462. https://doi.org/10.3390/rs17030462
APA StyleSabatini, M., Pisano, A., Fanelli, C., Buongiorno Nardelli, B., Liberti, G. L., Santoleri, R., Donlon, C., & Ciani, D. (2025). Preliminary Assessment of the Impact of the Copernicus Imaging Microwave Radiometer (CIMR) on the Copernicus Mediterranean Sea Surface Temperature L4 Analyses. Remote Sensing, 17(3), 462. https://doi.org/10.3390/rs17030462