Towards a Unified Identifier of Satellite Remote Sensing Images
Abstract
:1. Introduction
2. Digital Image Object
2.1. The Essence of Satellite Remote Sensing Imagery
2.2. The Concept of Digital Image Object
3. Principles and Framework of Digital Image Object Identity Identification
3.1. Principles of Digital Image Object Identity Identification
- Global Uniqueness. Each DIO corresponds uniquely to a DII, and different DIOs are assigned different DIIs. Currently, due to the widespread use of remote sensing imagery, the same scene data may have multiple versions produced by different institutions, each assigned a different encoding name. This situation leads to a lack of uniformity and standardization in image identification across platforms and suppliers. The core of the DII is to assign a unique identity to the DIO rather than merely a coding name. This identity can precisely map to a specific image object, ensuring its recognition and resolution capabilities on a global scale.
- Scalability. With advancements in remote sensing technology and the expansion of application scenarios, the number of remote sensing image data products continues to increase. This requires the DII to have good scalability so that newly added data can be smoothly incorporated without affecting existing identifiers.
- Persistence. Once a DII is assigned to a DIO, it remains valid permanently, and does not change with any alterations to the object or changes in management responsibilities. Remote sensing data often involve long time cycles, so ensuring the persistence of the identifier is crucial. This can effectively maintain the validity of older data, preventing access difficulties caused by identifier expiration or data loss, and ensuring the continuous availability and integrity of data.
- Normativity. The composition structure of the DII should be clear, and the coding rules should be simple to ensure consistency across multisource, heterogeneous satellite remote sensing imagery.
- Resolvable. In this study, DIOs are considered first-order data entities. The goal is to simplify the process for users to access image data, enabling direct resolution from the DII to the DIO.
- Interpretability. Each character in the DII should have clear semantics, enabling users to understand and identify the basic information of the DIO. By integrating key metadata into the DII, users can intuitively learn about the basic information and related attributes of the DIO, thereby reducing the need for additional metadata retrieval. Furthermore, the clear semantic structure supports automated data processing and analysis, improving the overall efficiency of data management.
- Compatibility. Due to the global nature of remote sensing imagery, the DII must be designed to ensure compatibility, enabling it to serve as a unique identifier for global DIOs. It must also be compatible with existing image encoding systems, allowing for interconversion. By interfacing with current image encoding systems, the DII can support cross-platform data exchange and usage, enhancing the interoperability of data and the flexibility of systems. This compatibility provides an efficient way to manage and retrieve data and enables smoother integration and utilization of data across different systems and platforms.
3.2. The Unified Identity Identification Method for DIO
3.2.1. Design of the Identity Structure for DIO
3.2.2. Design of Digital Image Object Identification Rules
3.3. Digital Image Object Identity Identification Framework
4. Digital Image Object Identification System
4.1. Design of the Identification System
4.2. Case Study
- Irregular boundaries:
- 2.
- Temporal identifier ambiguity:
Algorithm 1: “name2DII” algorithm for ARD data. |
5. Discussion
6. Limitations
7. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Guo, H. Remote Sensing Application and Digital Earth. In Science Progress in China; Elsevier: Amsterdam, The Netherlands, 2003; pp. 401–425. [Google Scholar] [CrossRef]
- Cao, K.; Zhou, C.; Church, R.; Li, X. Revisiting spatial optimization in the era of geospatial big data and GeoAI. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103832. [Google Scholar] [CrossRef]
- Li, Y.; Ma, J.; Zhang, Y. Image retrieval from remote sensing big data: A survey. Inf. Fusion 2021, 67, 94–115. [Google Scholar] [CrossRef]
- Shen, Z.; Zhu, X.; Wang, H.; Tong, J.; Guo, X.; Wu, H.; Min, Y.; Wu, L. Research Data Network: Concept, Systems and Applications. Front. Data Comput. 2024, 6, 3–21. [Google Scholar] [CrossRef]
- Rodriguez, I.; Canosa, A.; Mucientes, M.; Bugarin, A. STAC: A web platform for the comparison of algorithms using statistical tests. In Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul, Turkey, 2–5 August 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Boudriki, B.; El Amrani, C. Big data and remote sensing: A new software of ingestion. Int. J. Electr. Comput. Eng. 2021, 11, 1521–1530. [Google Scholar] [CrossRef]
- Hurali, L.; Patil, A. Application Areas of Information-Centric Networking: State-of-the-Art and Challenges. IEEE Access 2022, 10, 122431–122446. [Google Scholar] [CrossRef]
- Collins, J.; Porras, J. CMR classics: Organizational vision and visionary organizations. Calif. Manag. Rev. 2008, 50, 117–137. [Google Scholar] [CrossRef]
- Ferreira, K.; Queiroz, G.; Marujo, F.; Costa, R. Building Earth Observation Data Cubes on AWS. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 43, 597–602. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Przemyslaw, M. Imaginaries of democratization and the value of open environmental data: Analysis of Microsoft’s planetary computer. Big Data Soc. 2024, 11, 20539517241242448. [Google Scholar] [CrossRef]
- Europe’s Eyes on Earth. Available online: https://www.copernicus.eu/en (accessed on 6 December 2024).
- Zhou, X.; Wang, X.; Zhou, Y.; Lin, Q.; Zhao, J.; Meng, X. Rsims: Large-scale heterogeneous remote sensing images management system. Remote Sens. 2021, 13, 1815. [Google Scholar] [CrossRef]
- Xu, C.; Du, X.; Fan, X.; Giuliani, G.; Hu, Z.; Wang, W.; Liu, J.; Wang, T.; Yan, Z.; Zhu, J.; et al. Cloud-based storage and computing for remote sensing big data: A technical review. Int. J. Digit. Earth 2022, 15, 1417–1445. [Google Scholar] [CrossRef]
- Yang, L.; He, W.; Qiang, X.; Zheng, J.; Huang, F. Research on remote sensing image storage management and a fast visualization system based on cloud computing technology. Multimed. Tools Appl. 2024, 83, 59861–59886. [Google Scholar] [CrossRef]
- Lubke, M.; Rengarajan, R.; Choate, M. Preliminary assessment of the geometric improvements to the Landsat Collection-2 archive. Earth Obs. Syst. XXVI 2021, 11829, 125–137. [Google Scholar] [CrossRef]
- China Platform of Earth Observation System. Available online: https://www.cpeos.org.cn/home/#/ (accessed on 6 December 2024).
- Lee, S.; Jeong, J.; Park, J. DNSNA: DNS name autoconfiguration for Internet of Things devices. In Proceedings of the 2016 18th International Conference on Advanced Communication Technology (ICACT), PyeongChang, Republic of Korea, 31 January–3 February 2016; pp. 410–416. [Google Scholar] [CrossRef]
- Paskin, N. Toward unique identifiers. Proc. IEEE 1999, 87, 1208–1227. [Google Scholar] [CrossRef]
- Luo, C.; Ma, Y.; Jing, X.; Huang, G. Internet of data: A solution for dataspace infrastructure and its technical challenges. Big Data Res. 2023, 9, 110–121. [Google Scholar] [CrossRef]
- Functional Requirements for Uniform Resource Names. Available online: https://www.rfc-editor.org/rfc/rfc1737.html (accessed on 6 December 2024).
- URN Syntax. Available online: https://www.ietf.org/rfc/rfc2141.txt (accessed on 6 December 2024).
- Dappert, A.; Farquhar, A.; Kotarski, R.; Hewlett, K. Connecting the Persistent Identifier Ecosystem: Building the Technical and Human Infrastructure for Open Research. Data Sci. J. 2017, 16, 28. [Google Scholar] [CrossRef]
- Paskin, N. Digital object identifiers for scientific data. Data Sci. J. 2005, 4, 12–20. [Google Scholar] [CrossRef]
- Chandrakar, R. Digital object identifier system: An overview. Electron. Libr. 2006, 24, 445–452. [Google Scholar] [CrossRef]
- Devaraju, A.; Huber, R. An automated solution for measuring the progress toward FAIR research data. Patterns 2021, 2, 100370. [Google Scholar] [CrossRef]
- ISO 26324; Information and Documentation—Digital Object Identifier System. ISO: Geneva, Switzerland, 2022.
- Miura, S. Earth Observation data access interoperability implementation among space agencies. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 3621–3623. [Google Scholar] [CrossRef]
- Jimenez, M.; Gonzalez, M.; Amaro, A.; Fernandez-Renau, A. Field spectroscopy metadata system based on ISO and OGC standards. ISPRS Int. J. Geo-Inf. 2014, 3, 1003–1022. [Google Scholar] [CrossRef]
- Justice, C.; Townshend, J.; Vermote, E.; Masuoka, E.; Wolfe, R.; Saleous, N.; Roy, D.; Morisette, J. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Bachmann, M.; Alonso, K.; Carmona, E.; Gerasch, B.; Habermeyer, M.; Holzwarth, S.; Krawczyk, H.; Langheinrich, M.; Marshall, D.; Pato, M.; et al. Analysis-Ready Data from Hyperspectral Sensors—The Design of the EnMAP CARD4L-SR Data Product. Remote Sens. 2021, 13, 4536. [Google Scholar] [CrossRef]
- Siqueira, A.; Lewis, A.; Thankappan, M.; Szantoi, Z.; Goryl, P.; Labahn, S.; Ross, J.; Hosford, S.; Mecklenburg, S.; Tadono, T.; et al. CEOS analysis ready data for land–an overview on the current and future work. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5536–5537. [Google Scholar] [CrossRef]
Landsat 8 & 9 | MOD09 | Sentinel-2A | Sentinel-3A | Sentinel-5P | Gaofen-1 | Gaofen-5 | Gaofen-7 | DII | ||
---|---|---|---|---|---|---|---|---|---|---|
Temporal Information | Image Data Acquisition Start Time | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ |
Image Data Acquisition End Time | ◉ | ◉ | ||||||||
Data Processing Time | ◉ | ◉ | ◉ | ◉ | ||||||
Spatial Information | Tile Number | ◉ | ◉ | ◉ | ||||||
Absolute Orbit Number | ◉ | ◉ | ||||||||
Relative Orbit Number | ◉ | ◉ | ||||||||
Processing Baseline Number | ◉ | |||||||||
Data Tile Number | ◉ | ◉ | ||||||||
Data Product Central Longitude | ◉ | ◉ | ||||||||
Data Product Central Latitude | ◉ | ◉ | ||||||||
Covered Geographic Location | ◉ | |||||||||
Product Information | Satellite/Mission Identifier | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ |
Processing Level | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ||
Sensor Identifier | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ||||
Product Name | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | |||
Resolution Type | ◉ | |||||||||
Product Type | ◉ | |||||||||
Product Serial Number | ◉ | ◉ | ◉ | |||||||
Dataset Name | ◉ | ◉ | ◉ | ◉ | ||||||
Dataset Type | ◉ | |||||||||
File Type | ◉ | |||||||||
Observation Data Downlink Orbit Number | ◉ | |||||||||
Product Tag | ◉ |
Landsat 8 & 9 | MOD09 | Sentinel-2A | Sentinel-3A | Sentinel-5P | Gaofen-1 | Gaofen-5 | Gaofen-7 | DII | |
---|---|---|---|---|---|---|---|---|---|
Global Uniqueness | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ |
Scalability | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ |
Persistence | ◉ | ||||||||
Normativity | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ |
Resolvable | ◉ | ||||||||
Interpretability | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ | ◉ |
Compatibility | ◉ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wu, J.; Wu, M.; Lu, Y.; Lu, S.; Zhu, D.; Zhou, C. Towards a Unified Identifier of Satellite Remote Sensing Images. Remote Sens. 2025, 17, 465. https://doi.org/10.3390/rs17030465
Wang J, Wu J, Wu M, Lu Y, Lu S, Zhu D, Zhou C. Towards a Unified Identifier of Satellite Remote Sensing Images. Remote Sensing. 2025; 17(3):465. https://doi.org/10.3390/rs17030465
Chicago/Turabian StyleWang, Jiahe, Jin Wu, Mingbo Wu, Yuxiang Lu, Shangwen Lu, Dayong Zhu, and Chenghu Zhou. 2025. "Towards a Unified Identifier of Satellite Remote Sensing Images" Remote Sensing 17, no. 3: 465. https://doi.org/10.3390/rs17030465
APA StyleWang, J., Wu, J., Wu, M., Lu, Y., Lu, S., Zhu, D., & Zhou, C. (2025). Towards a Unified Identifier of Satellite Remote Sensing Images. Remote Sensing, 17(3), 465. https://doi.org/10.3390/rs17030465