Assessing Spatiotemporal Dynamics of Net Primary Productivity in Shandong Province, China (2001–2020) Using the CASA Model and Google Earth Engine: Trends, Patterns, and Driving Factors
Abstract
:1. Introduction
2. Methodology and Materials
2.1. Research Area
2.2. Data Source
3. Research Framework and Methods
3.1. Research Framework
3.2. Methods
3.2.1. Estimation of NPP
3.2.2. Sen’s Slope Estimation
3.2.3. Mann–Kendall Test
3.2.4. Global Moran’s I
3.2.5. Center of Gravity Migration Model in NPP
3.2.6. Correlation Analysis
3.2.7. The PLS−SEM Model
4. Results
4.1. Spatiotemporal Changes in NPP
4.1.1. Temporal Changes
4.1.2. Spatial Changes
4.1.3. Spatial Autocorrelation of NPP Distribution
4.2. Driving Factors Analysis for NPP
4.2.1. Correlation Analysis of NPP
4.2.2. Structural Equation Modeling (SEM) of NPP Drivers PLS−SEM
5. Discussion
5.1. Advantages and Limitations of Using the CASA Model Based on GEE to Calculate NPP
5.2. Spatiotemporal Evolution of NPP
5.3. The Relationship Between NPP and Human Activities
5.4. Limitations and Future Work
6. Conclusions
- (1)
- From 2001 to 2020, NPP in Shandong Province exhibited an overall upward trend. This growth was particularly notable in Shandong’s central−southern and eastern regions. The higher values NPP showed concentrated in Shandong’s eastern-southern regions, while lower values were observed in western and northern regions.
- (2)
- The NPP centroid shifted eastward over the 20-year period, reflecting significant increases in vegetation productivity in the eastern regions. This spatial heterogeneity and centroid shift were closely related to human activities, climate conditions, and topographic features.
- (3)
- The analysis of driving factors revealed that climatic conditions exerted a significant positive influence on NPP, with temperature and precipitation exerting complex dynamic effects on vegetation productivity across different time periods. Human activity factors, such as urban expansion, nighttime light intensity, and GDP, have been identified to exert a substantial negative influence on NPP, with urbanization in particular accelerating vegetation degradation and reducing regional vegetation productivity. Also, the NPP showed spatial heterogeneity, with elevation and aspect contributing positively to NPP, although their effects varied across different areas.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty Years of Ecosystem Services: How Far Have We Come and How Far Do We Still Need to Go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, Drivers and Feedbacks of Global Greening. Nat. Rev. Earth Environ. 2019, 1, 14–27. [Google Scholar] [CrossRef]
- Mayer, A.; Kaufmann, L.; Kalt, G.; Matej, S.; Theurl, M.C.; Morais, T.G.; Leip, A.; Erb, K.-H. Applying the Human Appropriation of Net Primary Production Framework to Map Provisioning Ecosystem Services and Their Relation to Ecosystem Functioning across the European Union. Ecosyst. Serv. 2021, 51, 101344. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Xiao, X.; Qin, Y.; Yan, H.; Huang, J.; Wu, X.; Zhang, Y.; Zou, Z.; Doughty, R.B. Large Spatial Variation and Stagnation of Cropland Gross Primary Production Increases the Challenges of Sustainable Grain Production and Food Security in China. Sci. Total Environ. 2022, 811, 151408. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity Loss and Its Impact on Humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef]
- Dong, D.; Zhao, Z.; Gao, H.; Zhou, Y.; Gong, D.; Du, H.; Fujioka, Y. Analysis of Spatiotemporal Evolution and Driving Forces of Vegetation from 2001 to 2020: A Case Study of Shandong Province, China. Forests 2024, 15, 1245. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, J.; Xu, G.; Sha, Z.; Yin, J.; Li, Z. Estimation and Climate Impact Analysis of Terrestrial Vegetation Net Primary Productivity in China from 2001 to 2020. Land 2023, 12, 1223. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Liu, M.; Zhang, C.; Sun, G.; Lu, C.; Xu, X.; Ren, W.; Pan, S.; Chappelka, A. Model Estimates of Net Primary Productivity, Evapotranspiration, and Water Use Efficiency in the Terrestrial Ecosystems of the Southern United States during 1895–2007. For. Ecol. Manag. 2010, 259, 1311–1327. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Leith, H. Modeling the Primary Productivity of the World. Natural Resources; UNESCO: Paris, France, 1972; Volume 14, pp. 237–263. [Google Scholar]
- Mohammed, S.; Zhao, J.; Fang, S. Impacts of climate change on net primary productivity in Africa continent from 2001 to 2010. Int. J. Sci. Environ. 2018, 7, 365–381. [Google Scholar]
- Pranuthi, G.; Dubey, S.K.; Tripathi, S.K. Tripathi Comparison of Different Models for Estimation of Net Primary Productivity in India. J. Agrometeorol. 2012, 14, 105–110. [Google Scholar] [CrossRef]
- Shao, J.; Zhou, X.; Luo, Y.; Zhang, G.; Yan, W.; Li, J.; Li, B.; Dan, L.; Fisher, J.B.; Gao, Z.; et al. Uncertainty Analysis of Terrestrial Net Primary Productivity and Net Biome Productivity in China during 1901–2005. J. Geophys. Res. Biogeosci. 2016, 121, 1372–1393. [Google Scholar] [CrossRef]
- Ruimy, A.; Kergoat, L.; Bondeau, A.; The Participants of the Potsdam NPP Model Intercomparison. Comparing Global Models of Terrestrial Net Primary Productivity (NPP): Analysis of Differences in Light Absorption and Light-Use Efficiency. Glob. Change Biol. 1999, 5, 56–64. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Sun, X.; Xu, Y. Estimation of NPP in Huangshan District Based on Deep Learning and CASA Model. Forests 2024, 15, 1467. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Zhao, X.; Chen, F.; Wei, J.; Feng, Z.; Hou, T.; Chen, Y.; Yue, W.; Shang, H.; et al. Changes in Vegetation NDVI and Its Response to Climate Change and Human Activities in the Ferghana Basin from 1982 to 2015. Remote Sens. 2024, 16, 1296. [Google Scholar] [CrossRef]
- Ji, R.; Tan, K.; Wang, X.; Pan, C.; Xin, L. Spatiotemporal Monitoring of a Grassland Ecosystem and Its Net Primary Production Using Google Earth Engine: A Case Study of Inner Mongolia from 2000 to 2020. Remote Sens. 2021, 13, 4480. [Google Scholar] [CrossRef]
- Wu, C.; Chen, K.; You, X.; He, D.; Hu, L.; Liu, B.; Wang, R.; Shi, Y.; Li, C.; Liu, F. Improved CASA Model Based on Satellite Remote Sensing Data: Simulating Net Primary Productivity of Qinghai Lake Basin Alpine Grassland. Geosci. Model. Dev. 2022, 15, 6919–6933. [Google Scholar] [CrossRef]
- Huang, M.; Liu, F.; Gong, D.; Lin, H.; Chen, Y.; Hu, B.; Ge, Y.; Xiao, C. Spatiotemporal Evolution of Land Use Efficiency in 357 Cities across Mainland China from 2000 to 2020 Based on SDG 11.3.1. Sci. Total Environ. 2024, 954, 176157. [Google Scholar] [CrossRef]
- Huang, M.; Gong, D.; Zhang, L.; Lin, H.; Chen, Y.; Zhu, D.; Xiao, C.; Altan, O. Spatiotemporal Dynamics and Forecasting of Ecological Security Pattern under the Consideration of Protecting Habitat: A Case Study of the Poyang Lake Ecoregion. Int. J. Digit. Earth 2024, 17, 2376277. [Google Scholar] [CrossRef]
- Fu, Y.; Huang, M.; Gong, D.; Lin, H.; Fan, Y.; Du, W. Dynamic Simulation and Prediction of Carbon Storage Based on Land Use/Land Cover Change from 2000 to 2040: A Case Study of the Nanchang Urban Agglomeration. Remote Sens. 2023, 15, 4645. [Google Scholar] [CrossRef]
- Mehmood, K.; Anees, S.A.; Rehman, A.; Pan, S.; Tariq, A.; Zubair, M.; Liu, Q.; Rabbi, F.; Khan, K.A.; Luo, M. Exploring Spatiotemporal Dynamics of NDVI and Climate-Driven Responses in Ecosystems: Insights for Sustainable Management and Climate Resilience. Ecol. Inform. 2024, 80, 102532. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, J.; Guan, J.; Han, W.; Liu, Y. Grassland Cover Dynamics and Their Relationship with Climatic Factors in China from 1982 to 2021. Sci. Total Environ. 2023, 905, 167067. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Wu, S.; Long, W.; Chen, C.; Zhang, Z.; Fang, Y.; Zhang, Y.; Luo, G. Quantitative Analysis of the Impact of Climate Change and Oasification on Changes in Net Primary Productivity Variation in Mid-Tianshan Mountains from 2001 to 2020. Ecol. Indic. 2023, 154, 110820. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, Y.; Yang, R.; Ma, X.; Zhang, J.; Qi, W.; Guo, Q.; Wang, H. Impacts of Climate Change and Land Use/Cover Change on the Net Primary Productivity of Vegetation in the Qinghai Lake Basin. Int. J. Environ. Res. Public Health 2023, 20, 2179. [Google Scholar] [CrossRef]
- Liu, J.; Yan, Q.; Zhang, M. Ecosystem Carbon Storage Considering Combined Environmental and Land-Use Changes in the Future and Pathways to Carbon Neutrality in Developed Regions. Sci. Total Environ. 2023, 903, 166204. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Manning, A.C.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; Jackson, R.B.; et al. Global Carbon Budget 2017. Earth Syst. Sci. Data 2018, 10, 405–448. [Google Scholar] [CrossRef]
- Shi, S.; Zhu, L.; Luo, Z.; Qiu, H. Quantitative Analysis of the Contributions of Climatic and Anthropogenic Factors to the Variation in Net Primary Productivity, China. Remote Sens. 2023, 15, 789. [Google Scholar] [CrossRef]
- Peng, J.; Shen, H.; Wu, W.; Liu, Y.; Wang, Y. Net Primary Productivity (NPP) Dynamics and Associated Urbanization Driving Forces in Metropolitan Areas: A Case Study in Beijing City, China. Landsc. Ecol. 2016, 31, 1077–1092. [Google Scholar] [CrossRef]
- Sun, H.; Chen, Y.; Xiong, J.; Ye, C.; Yong, Z.; Wang, Y.; He, D.; Xu, S. Relationships between Climate Change, Phenology, Edaphic Factors, and Net Primary Productivity across the Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102708. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Asrar, G.R.; Mao, J.; Li, X.; Li, W. Response of Vegetation Phenology to Urbanization in the Conterminous United States. Glob. Change Biol. 2017, 23, 2818–2830. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cheng, Y.; Liu, Z.; Li, Q.; Zhang, H.; Wei, W. Conflict or Coordination? The Spatiotemporal Relationship Between Humans and Nature on the Qinghai-Tibet Plateau. Earth’s Future 2023, 11, e2022EF003452. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1km Monthly Temperature and Precipitation Dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y. Global 1 Km × 1 Km Gridded Revised Real Gross Domestic Product and Electricity Consumption during 1992–2019 Based on Calibrated Nighttime Light Data. Sci Data 2022, 9, 202. [Google Scholar] [CrossRef]
- Rodigheri, G.; Fontana, D.C.; Da Luz, L.B.; Dalmago, G.A.; Schirmbeck, L.W.; Schirmbeck, J.; De Gouvêa, J.A.; Da Cunha, G.R. TVDI-Based Water Stress Coefficient to Estimate Net Primary Productivity in Soybean Areas. Ecol. Model. 2024, 490, 110636. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhao, J.; Zhu, Z.; Zhang, H.; Zhang, Z.; Guo, X.; Bi, Y.; Sun, L. Remotely Sensed Estimation of Net Primary Productivity (NPP) and Its Spatial and Temporal Variations in the Greater Khingan Mountain Region, China. Sustainability 2017, 9, 1213. [Google Scholar] [CrossRef]
- Bao, G.; Bao, Y.; Qin, Z.; Xin, X.; Bao, Y.; Bayarsaikan, S.; Zhou, Y.; Chuntai, B. Modeling Net Primary Productivity of Terrestrial Ecosystems in the Semi-Arid Climate of the Mongolian Plateau Using LSWI-Based CASA Ecosystem Model. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 84–93. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Wang, J.; Dong, G.; Wei, Y. Quantitative Analysis of NDVI Driving Factors Based on the Geographical Detector Model in the Chengdu-Chongqing Region, China. Ecol. Indic. 2023, 155, 110978. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Wang, W.; Zhou, H.; Liang, T.; Hou, F.; Xu, J.; Xue, P. Quantitative Spatial Analysis of Vegetation Dynamics and Potential Driving Factors in a Typical Alpine Region on the Northeastern Tibetan Plateau Using the Google Earth Engine. CATENA 2021, 206, 105500. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Xu, J.; Zhou, H.; Wang, W.; Wang, H. Temporal and Spatial Variations of Ecological Security on the Northeastern Tibetan Plateau Integrating Ecosystem Health-Risk-Services Framework. Ecol. Indic. 2024, 158, 111365. [Google Scholar] [CrossRef]
- Li, X.; Zulkar, H.; Wang, D.; Zhao, T.; Xu, W. Changes in Vegetation Coverage and Migration Characteristics of Center of Gravity in the Arid Desert Region of Northwest China in 30 Recent Years. Land. 2022, 11, 1688. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Q.; Zou, F. Spatio-Temporal Changes of Vegetation Net Primary Productivity and Its Driving Factors on the Qinghai-Tibetan Plateau from 2001 to 2017. Remote Sens. 2021, 13, 1566. [Google Scholar] [CrossRef]
- Ren, C.; Zhou, Z.; Delgado-Baquerizo, M.; Bastida, F.; Zhao, F.; Yang, Y.; Zhang, S.; Wang, J.; Zhang, C.; Han, X.; et al. Thermal Sensitivity of Soil Microbial Carbon Use Efficiency across Forest Biomes. Nat. Commun. 2024, 15, 6269. [Google Scholar] [CrossRef]
- Wang, C.; Ma, L.; Zhang, Y.; Chen, N.; Wang, W. Spatiotemporal Dynamics of Wetlands and Their Driving Factors Based on PLS−SEM: A Case Study in Wuhan. Sci. Total Environ. 2022, 806, 151310. [Google Scholar] [CrossRef]
- Xu, B.; Li, J.; Liu, Y.; Zhang, T.; Luo, Z.; Pei, X. Disentangling the Response of Vegetation Dynamics to Natural and Anthropogenic Drivers over the Qinghai-Tibet Plateau Using Dimensionality Reduction and Structural Equation Model. For. Ecol. Manag. 2024, 554, 121677. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 3. Boenningstedt: SmartPLS GmbH. 2015. Available online: http://www.smartpls.com (accessed on 23 September 2024).
- Chen, J.; Shao, Z.; Deng, X.; Huang, X.; Dang, C. Vegetation as the Catalyst for Water Circulation on Global Terrestrial Ecosystem. Sci. Total Environ. 2023, 895, 165071. [Google Scholar] [CrossRef]
- Zhu, M.; Zhu, D.; Huang, M.; Gong, D.; Li, S.; Xia, Y.; Lin, H.; Altan, O. Assessing the Impact of Climate Change on the Landscape Stability in the Mediterranean World Heritage Site Based on Multi-Sourced Remote Sensing Data: A Case Study of the Causses and Cévennes, France. Remote Sens. 2025, 17, 203. [Google Scholar] [CrossRef]
- Liao, Z.; Zhou, B.; Zhu, J.; Jia, H.; Fei, X. A Critical Review of Methods, Principles and Progress for Estimating the Gross Primary Productivity of Terrestrial Ecosystems. Front. Environ. Sci. 2023, 11, 1093095. [Google Scholar] [CrossRef]
- Zeng, J.; Zhou, T.; Wang, Q.; Xu, Y.; Lin, Q.; Zhang, Y.; Wu, X.; Zhang, J.; Liu, X. Spatial Patterns of China’s Carbon Sinks Estimated from the Fusion of Remote Sensing and Field-Observed Net Primary Productivity and Heterotrophic Respiration. Ecol. Inform. 2023, 76, 102152. [Google Scholar] [CrossRef]
- Endsley, K.A.; Zhao, M.; Kimball, J.S.; Devadiga, S. Continuity of Global MODIS Terrestrial Primary Productivity Estimates in the VIIRS Era Using Model-Data Fusion. J. Geophys. Res. Biogeosci. 2023, 128, e2023JG007457. [Google Scholar] [CrossRef]
- Yang, F.; He, P.; Ding, H.; Shi, Y. A Monthly High-Resolution Net Primary Productivity Dataset (30 m) of Qinghai Plateau From 1987 to 2021. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8262–8273. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Kelong, C.; Yanli, H.; Shengkui, C.; Jin, M.; Guangchao, C.; Hui, L. The Study of Vegetation Carbon Storage in Qinghai Lake Valley Based on Remote Sensing and CASA Model. Procedia Environ. Sci. 2011, 10, 1568–1574. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, H.; Mu, M.; Dong, Y. A dynamic collaborative adversarial domain adaptation network for unsupervised rotating machinery fault diagnosis. Reliab. Eng. Syst. Saf. 2024, 255, 110662. [Google Scholar] [CrossRef]
- Xue, H.; Chen, Y.; Dong, G.; Li, J. Quantitative Analysis of Spatiotemporal Changes and Driving Forces of Vegetation Net Primary Productivity (NPP) in the Qimeng Region of Inner Mongolia. Ecol. Indic. 2023, 154, 110610. [Google Scholar] [CrossRef]
- Fu, Y.; Lu, X.; Zhao, Y.; Zeng, X.; Xia, L. Assessment Impacts of Weather and Land Use/Land Cover (LULC) Change on Urban Vegetation Net Primary Productivity (NPP): A Case Study in Guangzhou, China. Remote Sens. 2013, 5, 4125–4144. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Zhang, K.; Cheng, X.; Band, L.E.; Zhang, Q. Effects of Land Use/Land Cover and Climate Changes on Terrestrial Net Primary Productivity in the Yangtze River Basin, China, from 2001 to 2010. J. Geophys. Res. Biogeosci. 2014, 119, 1092–1109. [Google Scholar] [CrossRef]
- Deng, Y.L.; Huang, M.; Gong, D.H.; Ge, Y.; Lin, H.; Zhu, D.Y.; Chen, Y.; Altan, O. Carbon balance dynamic evolution and simulation coupling economic development and ecological protection: A case study of Jiangxi Province at county scale from 2000 to 2030. Int. J. Digit. Earth 2025, 18, 2448572. [Google Scholar] [CrossRef]
- Zika, M.; Erb, K.-H. The Global Loss of Net Primary Production Resulting from Human-Induced Soil Degradation in Drylands. Ecol. Econ. 2009, 69, 310–318. [Google Scholar] [CrossRef]
- Wei, X.; Li, Q.; Liu, Y.; Liu, S.; Guo, X.; Zhang, L.; Niu, D.; Zhang, W. Restoring Ecosystem Carbon Sequestration through Afforestation: A Sub-Tropic Restoration Case Study. For. Ecol. Manag. 2013, 300, 60–67. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M.; Zhang, Z.; Xu, Y.; Hayashi, Y. Remote Sensing of Crop Production in China by Production Efficiency Models: Models Comparisons, Estimates and Uncertainties. Ecol. Model. 2005, 183, 385–396. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, G.; Chen, C.; Ochege, F.U.; Hellwich, O.; Zheng, H.; Hamdi, R.; Wu, S. Quantifying the Contribution of Climate Change and Human Activities to Biophysical Parameters in an Arid Region. Ecol. Indic. 2021, 129, 107996. [Google Scholar] [CrossRef]
- Sun, L.; Li, H.; Wang, J.; Chen, Y.; Xiong, N.; Wang, Z.; Wang, J.; Xu, J. Impacts of Climate Change and Human Activities on NDVI in the Qinghai-Tibet Plateau. Remote Sens. 2023, 15, 587. [Google Scholar] [CrossRef]
Data | Abbreviation | Spatial Resolution | Temporal Resolution | Period | Data Source |
---|---|---|---|---|---|
Normalized Difference Vegetation Index | NDVI | 250 m | 16-day | 2001–2020 | GEE: MODIS/006/MOD13Q1 |
ECMWF ERA5-Land Solar Radiation | SOL | 9 km | Daily | GEE: ECMWF/ERA5_LAND/DAILY_AGGR | |
MODIS Evapotranspiration | ET, PET | 500 m | 8-day | GEE: MODIS/006/MOD16A2 | |
Average Annual Precipitation | PRE | 1 km | Monthly | [35] | |
Annual Average Temperature | TEM | Monthly | [35] | ||
NASA SRTM Digital Elevation | DEM | 30 m | N/A | 2000 | GEE: USGS/SRTMGL1_003 |
Soil Type | Soil | 1 km | Annual | 2023 | FAO: Harmonized World Soil Database |
Gross Domestic Product | GDP | 2001–2020 | [36] | ||
China Land Cover Dataset | LAND | [32] | |||
Nighttime Light (2001–2013) | Light | 2001–2013 | GEE: DMSP/OLS Nighttime Lights (NOAA/DMSP-OLS/NIGHTTIME_LIGHTS) | ||
Nighttime Light (2014–2020) | Light | 500 m | 2014–2020 | GEE: VIIRS Nighttime Day/Night Band | |
Population Density | POP | 100 m | 2001–2020 | GEE: WorldPop (WorldPop/GP/CHI_POP) | |
MODIS Land Surface Temperature | LST | 1 km | 8-day | GEE: MODIS/006/MOD11A2 |
Criteria | Value | Description |
---|---|---|
R2 | >0.67 | Substantial explanatory power |
>0.33 | Moderate explanatory power | |
>0.19 | Weak explanatory power | |
Q2 | >0 | A larger value denoting higher prediction accuracy of the model |
GOF | 0.1 | Overall fit of the model is weak |
0.25 | Overall fit of the model is medium | |
0.36 | Overall fit of the model is strong |
Year | Influencing Factor | Direct Effect | →Climate | →Human | Total Indirect Effect | Total Effect |
---|---|---|---|---|---|---|
2005 | Climatic Factors | 0.349 | 0.031 | 0.031 | 0.38 | |
Natural Environmental Factors | 0.062 | −0.032 | −0.004 | −0.036 | 0.026 | |
Human Activity Factors | −0.499 | / | / | / | −0.499 | |
2010 | Climatic Factors | 0.206 | −0.009 | −0.009 | 0.197 | |
Natural Environmental Factors | 0.017 | −0.009 | −0.002 | −0.011 | 0.006 | |
Human Activity Factors | −0.567 | / | / | / | −0.567 | |
2015 | Climatic Factors | 0.643 | 0.006 | 0.006 | 0.649 | |
Natural Environmental Factors | 0.304 | −0.149 | −0.038 | −0.187 | 0.117 | |
Human Activity Factors | −0.44 | / | −0.44 | |||
2020 | Climatic Factors | 0.163 | −0.0001 | −0.0001 | 0.1629 | |
Natural Environmental Factors | 0.232 | −0.105 | −0.03 | −0.135 | 0.097 | |
Human Activity Factors | −0.559 | / | −0.559 |
LULC Type | 2001 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
Cropland | 264.36 | 296.30 | 269.27 | 296.52 | 340.77 |
Forest | 290.98 | 353.76 | 348.01 | 367.71 | 448.65 |
Grassland | 213.69 | 276.78 | 277.04 | 295.75 | 368.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, D.; Zhang, R.; Guo, W.; Gong, D.; Zhao, Z.; Zhou, Y.; Xu, Y.; Fujioka, Y. Assessing Spatiotemporal Dynamics of Net Primary Productivity in Shandong Province, China (2001–2020) Using the CASA Model and Google Earth Engine: Trends, Patterns, and Driving Factors. Remote Sens. 2025, 17, 488. https://doi.org/10.3390/rs17030488
Dong D, Zhang R, Guo W, Gong D, Zhao Z, Zhou Y, Xu Y, Fujioka Y. Assessing Spatiotemporal Dynamics of Net Primary Productivity in Shandong Province, China (2001–2020) Using the CASA Model and Google Earth Engine: Trends, Patterns, and Driving Factors. Remote Sensing. 2025; 17(3):488. https://doi.org/10.3390/rs17030488
Chicago/Turabian StyleDong, Dejin, Ruhan Zhang, Wei Guo, Daohong Gong, Ziliang Zhao, Yufeng Zhou, Yang Xu, and Yuichiro Fujioka. 2025. "Assessing Spatiotemporal Dynamics of Net Primary Productivity in Shandong Province, China (2001–2020) Using the CASA Model and Google Earth Engine: Trends, Patterns, and Driving Factors" Remote Sensing 17, no. 3: 488. https://doi.org/10.3390/rs17030488
APA StyleDong, D., Zhang, R., Guo, W., Gong, D., Zhao, Z., Zhou, Y., Xu, Y., & Fujioka, Y. (2025). Assessing Spatiotemporal Dynamics of Net Primary Productivity in Shandong Province, China (2001–2020) Using the CASA Model and Google Earth Engine: Trends, Patterns, and Driving Factors. Remote Sensing, 17(3), 488. https://doi.org/10.3390/rs17030488