Integrating Climate Data and Remote Sensing for Maize and Wheat Yield Modelling in Ethiopia’s Key Agricultural Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used
2.2.1. Climate Variables
2.2.2. Satellite Imaging Data
2.2.3. Crop Masks Data
2.2.4. Crop Yield and Harvest Index (HI) Data
2.3. Methods of Analysis
2.3.1. Method for Predicting Crop Yield
2.3.2. Correlation Analysis
2.3.3. Regression Models
2.3.4. CropWatch Crop Yield Prediction Model Overviews
2.3.5. Model Evaluation
3. Results
3.1. Meteorological Variables
3.1.1. Variables That Significantly Influenced Yield Prediction
3.1.2. Selecting Important Climate Variables
3.2. Regression-Based Yield Prediction Models
3.2.1. Models Using Climate Predictors
3.2.2. Models Using NDVI and Climate Predictors
3.2.3. Selected Yield Prediction Models
3.3. Predicted and Observed Maize and Wheat Yield
3.3.1. Yield Estimate with Climate Predictors Only
3.3.2. Yield Estimate with NDVI and Climate Predictors
3.4. Remote Sensing Cloud Platform Yield Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix
Regression Model Code | Developed Regression Model |
---|---|
Arsi_M | Y = −954.22 + 0.04 × ArealRF − 2.41 × VPDm − 0.46 × VPDx + 63.15 × Tmean − 18.2 × Tm + 1211.04 × NDVIx − 0.23 × VPDm2 + 0.33 × VPDx2 − 1.87 × Tmean2 + 0.89 × Tm2 − 724.43 × NDVIx2 |
Arsi_W | Y = −410.94 − 68.59 × VPDm − 48.68 × VPDx − 24.28 × Tmean + 31.53 × Tx + 588.45 × NDVx + 140.71 × VPDm2 + 69.86 × VPDx2 + 1.96 × Tmean2 − 1.14 × Tx2 − 0.93 × Tm2 − 321.83 × NDVIx2 |
Bale_W | Y = 487.69 + 0.002 × ArealRF − 4.11 × VPDm + 24.60 × VPDx − 21.05 × Tmean − 546.47 × NDVIx + 1.59 × VPDm2 − 14.1 × VPDx2 + 0.442 × Tmean2 + 304.23 × NDVIx2 |
Bale_W | Y = 65.35 – 0.014 × ArealRF + 29.44 × VPDm + 41.20 × VPDx + 9.41 × Tmean + 1.69 × Tx − 488.31 × NDVIx − 22.79 × VPDm2 − 20.66 × VPDx2 − 0.197 × Tmean2 – 0.04 × Tx2 + 275.70 × NDVIx2 |
West Shewa_M | Y = 134.9 -0.08 × ArealRF + 57.81 × VPDm − 50.02 × VPDx − 151.9 × Tmean +101.46 × Tx − 191.96 × VPDm2 + 40 − 44 × VPDx2 + 0.46 × Tmean2 − 0.68*Tx2 + 3.29*Tm2 |
West Shewa_W | Y = -1060.7 + 0.01 × ArealRF − 39.14 × VPDx + 2.14 × Tx − 18.6 × Tm + 2595.5 × NDVIx + 55.3 × VPDx2 − 0.1 × Tx2 + 0.98 × Tm2-1488.8 × NDVIx2 |
East Shewa_M | Y = −210.25 + 0.02 × ArealRF − 52.59 × VPDm +2.42 × VPDx+ 56.96 × Tmean -24.34 × Tx +65.49 × VPDm2 -3.99 × VPDx2 − 1.6 × Tmean2 +0.51 × Tx2 |
East Shewa_W | Y = 368.91 + 0.02 × ArealRF − 34.6 × VPDm − 1.53 × VPDx + 9.01 × Tmean − 42.24 × Tm − 523.8 × NDVIx + 43.9 × VPDm2 − 0.62 × VPDx2 − 0.26 × Tmean2 +1.95 × Tm2 + 320.4 × NDVIx2 |
Ill Ababora_M | Y = −2101.03 − 0.03 × ArealRF + 28.51 × VPDm +5.1 × VPDx +39.42 × Tmean − 0.28 × Tm +3995.97 × NDVIx − 147.54 × VPDm2 − 14.9 × VPDx2 − 1.1 × Tmean2 − 2269.04 × NDVIx2 |
Ill Ababora_W | Y = −3670.51 − 0.03 × ArealRF + 76.6 × VPDm − 21.7 × VPDx +14.97 × Tmean − 2.73 × Tmax − 0.8 × Tm + 8063.5 × NDVIx − 281.6 × VPDm2 + 25.8 × VPDx2 − 0.5 × Tmean2 + 0.1 × Tx2 + 0.07 × Tm2 − 4525.63 × NDVIx2 |
West Arsi_M | Y = −7.67 + 0.03 × ArealRF + 28.17 × VPDx − 3.33 × Tmean − 21.32 × Tm +205.41 × NDVIx − 88.58 × VPDx2 + 0.10 × Tmean2 + 1.71 × Tm2 − 110.19 × NDVx2 |
West Arsi_W | Y = −596.99 + 0.1 × ArealRF − 10.5 × VPDm − 94.6 × VPDx +10.8 × Tmean + 4.5 × Tx +11 × NDVIx +105.4 × VPDm2 + 399.9 × VPDx2 − 0.44 × Tmean2 − 0.2 × Tx2 − 623.2 × NDVIx2 |
North Shewa_M | Y = 108.9 + 0.01 × ArealRF − 14.6 × VPDm − 5.4 × VPDx − 7.4 × Tmean + 6.6 × Tm − 237.01 × NDVIx + 19.82 × VPDm2 +1.95 × VPDx2 + 0.22 × Tmean2 − 0.3 × Tm2 +158.60 × NDVIx2 |
North Shewa_W | Y = −188 +0.002 × ArealRF − 5.7 × VPDx − 3.2 × Tx + 2.45 × Tm +463.14 × NDVIx +2.62 × VPDx2 +0.1 × Tx2 − 0.09 × Tm2 − 256.9 × NDVx2 |
South west Shewa_M | Y = −570.5 + 0.02 × ArealRF + 30.72 × VPDx +229.8 × Tmean − 133.5 × Tx + 31.5 × NDVIx − 24.6 × VPDx2 − 5.7 × Tmean2 + 2.5 × Tx2 + 7.2 × NDVIx2 |
South west Shewa_W | Y = −0.6 × ArealRF − 140.5 × VPDm − 79.7 × VPDx + 85.53 × Tmean − 23.1 × Tx − 1037.7 × NDVIx +245 × VPDm2 + 89 × VPDx2 +2.02 × Tmean2 − 1.13 × Tx2 − 3.2 × Tm2 + 634 × NDVIx2 |
East Hararge_M | Y = −194.07 + 0.017 × ArealRF − 23.25 × VPDm + 26.65 × VPDx + 4.71 × Tmean + 17.09 × Tx − 3.99 × Tm + 55.98 × VPDm2 − 37.89 × VPDx2 − 0.09 × Tmean2 − 0.44 × Tx2 + 0.14 × Tm2 |
East Hararge_W | Y = 252.8 − 0.03 × ArealRF − 6.72 × VPDm + 28.41 × VPDx + 10.62 × Tmean − 18.3 × Tx − 4.7 × Tm -297.5 × NDVIx + 10.2 × VPDm2 − 28.3 × VPDx2 − 0.3 × Tmean2 +0.42 × Tx2 +0.2 × Tm2 + 179.7 × NDVIx2 |
West Hararge_M | Y = 57.9 − 0.003 × ArealRF − 7.02 × VPDm − 492.75 × NDVIx − 15.33 × Tmean +20.8 × Tx + 11.2 × VPDm2 + 317.1 × NDVIx2 + 0.35 × Tmean2 − 0.35 × Tx2 |
West Hararge_W | Y = −121.94 + 0.002 × ArealRF − 2.4 × VPDm − 18.4 × Tmean +8.1 × Tx + 471.03 × NDVIx +2.2 × VPDm2 +0.41 × Tmean2 − 0.13 × Tx2 -262.3 × NDVIx2 |
East Wellega_M | Y = −734.89 − 0.04 × ArealRF − 122.71 × VPDm − 16.39 × VPDx − 73.93 × Tmean + 112.25 × Tx + 66.83 × VPDm2 + 8.15 × VPDx2 + 1.18 × Tmean2 − 1.84 × Tx2 + 0.59 × Tm2 |
East Wellega_W | Y = 204.5 + 0.004 × ArealRF + 100.3 × VPDm − 35.8 × VPDx + 16.2 × Tmean − 32.2 × Tm − 383.2 × NDVIx − 346.5 × VPDm2 + 57.2 × VPDx2 − 0.41 × Tmean2 + 1.3 × Tm2 + 229.4 × NDVIx2 |
Kellem Wellega_M | Y = −1841.6 + 466.8 × VPDm − 60.4 × VPDx +18 × Tm + 3872.1 × NDVIx − 1203.9 × VPDm2 +71.0 ×VPDx2 − 0.65 × Tm2 − 2226.9 × NDVIx2 |
Kellem Wellega_W | Y = 7.49 + 0.03 × ArealRF − 137.62 × VPDm − 21.27 × VPDx + 348.6 × VPDm2 + 26.74 × VPDx2 |
Horo Gurdro_M | Y = 3790.8 − 0.07 × ArealRF + 1224.1 × VPDm +15.5 × VPDx − 9350.9 × NDVIx − 3027.4 × VPDm2 − 14.5 × VPDx2 +5660 × NDVx2 |
Horo Gurdro_W | Y = −2973 − 96.5 × VPDx +18.6 × Tmean − 7.8 × Tx + 6824.6 × NDVIx +103.5 × VPDx2 − 0.42 × Tmean2 + 0.13 × Tx2 − 4002.3 × NDVIx2 |
References
- Debalke, D.B.; Abebe, J.T. Maize yield forecast using GIS and remote sensing in Kaffa Zone, South West Ethiopia. Environ. Syst. Res. 2022, 11, 1. [Google Scholar] [CrossRef]
- Nyéki, A.; Neményi, M. Crop Yield Prediction in Precision Agriculture. Agronomy 2022, 12, 2460. [Google Scholar] [CrossRef]
- Ulfa, F.; Orton, T.G.; Dang, Y.P.; Menzies, N.W. Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models. Agronomy 2022, 12, 384. [Google Scholar] [CrossRef]
- Piekutowska, M.; Niedbała, G.; Piskier, T.; Lenartowicz, T.; Pilarski, K.; Wojciechowski, T.; Pilarska, A.A.; Czechowska-Kosacka, A. The Application of Multiple Linear Regression and Artificial Neural Network Models for Yield Prediction of Very Early Potato Cultivars before Harvest. Agronomy 2021, 11, 885. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, M.; Zeng, H.; Tian, F.; Potgieter, A.B.; Qin, X.; Yan, N.; Chang, S.; Zhao, Y.; Dong, Q.; et al. Challenges and opportunities in remote sensing-based crop monitoring: A review. Natl. Sci. Rev. 2022, 10, nwac290. [Google Scholar] [CrossRef]
- Beyene, A.N.; Zeng, H.; Wu, B.; Zhu, L.; Gebremicael, T.G.; Zhang, M.; Bezabh, T. Coupling remote sensing and crop growth model to estimate national wheat yield in Ethiopia. Big Earth Data 2022, 6, 18–35. [Google Scholar] [CrossRef]
- Yadav, K.; Geli, H.M.E. Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period. Land 2021, 10, 1389. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B. On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteorol. 2010, 150, 1443–1452. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, H.; Zhang, M.; Wu, B.; Qin, X. Global de-trending significantly improves the accuracy of XGBoost-based county-level maize and soybean yield prediction in the Midwestern United States. GIScience Remote Sens. 2024, 61, 2349341. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, H.; Zhang, M.; Wu, B.; Zhao, Y.; Yao, X.; Cheng, T.; Qin, X.; Wu, F. A county-level soybean yield prediction framework coupled with XGBoost and multidimensional feature engineering. Int. J. Appl. Earth Obs. Geoinform. 2023, 118, 103269. [Google Scholar] [CrossRef]
- Bingfang, W.; Miao, Z.; Hongwei, Z.; Guoshui, L.; Sheng, C.; Gommes, R. New indicators for global crop monitoring in CropWatch -case study in North China Plain. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Beijing, China, 22–26 April 2014. [Google Scholar]
- Du, X.; Wu, B.; Li, Q.; Meng, J.; Jia, K. A Method to Estimated Winter Wheat Yield with the MERIS Data. In Proceedings of the Progress in Electromagnetics Research Symposium (PIERS) Proceedings, Beijing, China, 23–27 March 2009. [Google Scholar]
- Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zou, W.; Zheng, Y.; Zhang, N.; Chang, S.; Xing, Q.; et al. Global Crop Monitoring: A Satellite-Based Hierarchical Approach. Remote Sens. 2015, 7, 3907–3933. [Google Scholar] [CrossRef]
- Asfew, M.; Bedemo, A. Impact of Climate Change on Cereal Crops Production in Ethiopia. Adv. Agric. 2022, 2022, 2208694. [Google Scholar] [CrossRef]
- CSA. Report on Area and Production of Major Crops (Private Peasant Holdings, Meher Season), Statistical Bulletin; Annual Report; Central Statistical Agency: Addis Ababa, Ethiopia, 2021. [Google Scholar]
- Senbeta, A.F.; Worku, W. Ethiopia’s wheat production pathways to self-sufficiency through land area expansion, irrigation advance, and yield gap closure. Heliyon 2023, 9, e20720. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, T.; Senay, G.B.; Berhan, G.; Regassa, T.; Beyene, S. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 2015, 40, 39–54. [Google Scholar] [CrossRef]
- Weldearegay, S.K.; Tedla, D.G. Impact of climate variability on household food availability in Tigray, Ethiopia. Agric. Food Secur. 2018, 7, 6. [Google Scholar] [CrossRef]
- Nath, K.P.; Behera, B. A critical review of impact of and adaptation to climate change in developed and developing economies. Environ. Dev. Sustain. 2011, 13, 141–162. [Google Scholar] [CrossRef]
- Mwaniki, A. Achieving Food Security in Africa: Challenges and Issues. Cornell University: Ithaca, NY, USA, 2004. U.S. Plant, Soil and Nutrition Laboratory. Available online: https://repositori.kpkm.gov.my/handle/123456789/85 (accessed on 23 May 2024).
- Devereux, S.; Simon, M. Food Insecurity in Sub-Saharan Africa; Practical Action Publishing: London, UK, 2001. [Google Scholar]
- Birara Endalew, B.E.; Mequanent Muche, M.M.; Tadesse, S. Assessment of Food Security Situation in Ethiopia: A Review. Asian J. Agric. Res. 2017, 9, 55–68. [Google Scholar]
- Zinna, A.W.; Suryabhagavan, K.V. Remote Sensing and GIS Based Spectro-Agrometeorological Maize Yield Forecast Model for South Tigray Zone, Ethiopia. J. Geogr. Inf. Syst. 2016, 8, 282–292. [Google Scholar] [CrossRef]
- Reda, A.F. Wheat Yield Forecast Using Remote Sensing and GIS in East Arsi Zone, Ethiopia. Doctoral Dissertation, Addis Ababa University, Addis Ababa, Ethiopia, 2015. [Google Scholar]
- CSA. Agricultural Sample Survey; Report on Farm Management Practices 2018; Annual Report; Central Statistical Agency: Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Tetens, O. Uber einige meteorologische Begriffe. Z. Geophys. 1930, 6, 297–309. [Google Scholar]
- Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ. 2010, 114, 1312–1323. [Google Scholar] [CrossRef]
- Mkhabela, M.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric. For. Meteorol. 2011, 151, 385–393. [Google Scholar] [CrossRef]
- Vintrou, E.; Desbrosse, A.; Bégué, A.; Traoré, S.; Baron, C.; Seen, D.L. Crop area mapping in West Africa using landscape stratiication of MODIS time series and comparison with existing global land products. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 83–93. [Google Scholar]
- Kouadio, L.; Newlands, N.K.; Davidson, A.; Zhang, Y.; Chipanshi, A. Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop Yield Forecasting at the Ecodistrict Scale. Remote Sens. 2014, 6, 10193–10214. [Google Scholar] [CrossRef]
- Johnson, D.M. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 2014, 141, 116–128. [Google Scholar] [CrossRef]
- Friedl, M.; Gray, J.; Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V061. 2022, distributed by NASA EOSDIS Land Processes Distributed Active Archive Center. 2022. Available online: https://doi.org/10.5067/MODIS/MCD12Q2.061 (accessed on 28 May 2024).
- Gorfu, D.; Ahmed, E. Crops and Agro-Ecological Zones of Ethiopia; Ethiopian Institute of Agricultural Research: Addis Ababa, Ethiopia, 2012. [Google Scholar]
- Rijks, O.; Massart, M.; Rembold, F.; Gommes, R.; Leo, O. Crop and rangeland monitoring in eastern Africa. In Proceedings of the 2nd International Workshop, Nara, Japan, 29–31 October 2007; pp. 95–104. [Google Scholar]
- Worku, M.; Zelleke, H. Advances in Improving Harvest Index and Grain Yield of Maize in Ethiopia. East Afr. J. Sci. 2007, 1, 112–119. [Google Scholar] [CrossRef]
- Belay, M.K. Growth, Yield-Related Traits and Yield of Lowland Maize (Zea mays L.) Varieties as Influenced by Inorganic NPS and N Fertilizer Rates at Babile, Eastern Ethiopia. Int. J. Agron. 2020, 2020, 8811308. [Google Scholar] [CrossRef]
- Friendly, M. Corrgrams: Exploratory displays for correlation matrices. Am. Stat. 2002, 56, 316–324. [Google Scholar] [CrossRef]
- Gareth, J.; Daniela, W.; Trevor, H.; Robert, T. An Introduction to Statistical Learning: With Applications in R; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Wang, J.; He, P.; Liu, Z.; Jing, Y.; Bi, R. Yield estimation of summer maize based on multi-source remote-sensing data. Agron. J. 2022, 114, 3389–3406. [Google Scholar] [CrossRef]
- Yang, J.; Liu, S.; Hoogenboom, G. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agric. Syst. 2014, 127, 81–89. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Siebert, S.; Webber, H.; Rezaei, E.E. Weather impacts on crop yields—Searching for simple answers to a complex problem. Environ. Res. Lett. 2017, 12, 081001. [Google Scholar] [CrossRef]
- Urban, D.; Roberts, M.J.; Schlenker, W.; Lobell, D.B. Projected temperature changes indicate significant increase in interannual variability of U.S. maize yields. Clim. Change 2012, 112, 525–533. [Google Scholar] [CrossRef]
- You, L.; Rosegrant, M.W.; Wood, S.; Sun, D. Impact of growing season temperature on wheat productivity in China. Agric. Forest Meteorol. 2009, 149, 1009–1014. [Google Scholar] [CrossRef]
- Hatfield, J.; Takle, G.; Grotjahn, R.; Holden, P.; Izaurralde, R.C.; Mader, T.; Marshall, E.; Liverman, D. Ch. 6: Agriculture—Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Richmond, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 150–174. Available online: http://nca2014.globalchange.gov/report/sectors/agriculture (accessed on 17 January 2025).
- Rojas, O. Operational maize yield model development and validation based on remote sensing and agro-meteorological data in Kenya. Int. J. Remote Sens. 2007, 28, 3775–3793. [Google Scholar] [CrossRef]
Crop | Study Area | Climate Variables/NDVI and Climate Variables | R2 | RMSE | MSE | DF | d | Regression Model Code * |
---|---|---|---|---|---|---|---|---|
Maize | Arsi | ArealRF, VPDm, VPDx, Tmean, Tm, NDVIx | 0.79 | 0.478 | 0.228 | 9 | 0.937 | Arsi_M |
Wheat | VPDm, VPDx, Tmean, Tx, Tm, NDVIx | 0.83 | 0.432 | 0.187 | 9 | 0.952 | Arsi_W | |
Maize | Bale | ArealRF, VPDm, VPDx, Tmean, NDVIx | 0.62 | 0.657 | 0.432 | 11 | 0.868 | Bale_W |
Wheat | ArealRF, VPDm, VPDx, Tmean, Tx, NDVIx | 0.79 | 0.455 | 0.207 | 9 | 0.939 | Bale_W | |
Maize | W_Shewa | ArealRF, VPDm, VPDx, Tmean, Tm, Tx | 0.67 | 0.792 | 0.628 | 9 | 0.888 | West Shewa_M |
Wheat | ArealRF, VPDx, Tx, Tm, NDVIx | 0.71 | 0.468 | 0.219 | 11 | 0.907 | West Shewa_W | |
Maize | E_Shewa | ArealRF, VPDm, VPDx, Tmean, Tx | 0.72 | 0.502 | 0.252 | 11 | 0.912 | East Shewa_M |
Wheat | ArealRF, VPDm, VPDx, Tmean, Tm, NDVIx | 0.74 | 0.515 | 0.266 | 9 | 0.92 | East Shewa_W | |
Maize | Ill Ababora | ArealRF, VPDm, VPDMx, Tmean, Tm, NDVIx | 0.91 | 0.477 | 0.228 | 9 | 0.976 | Illu Ababora_M |
Wheat | ArealRF, VPDm, VPDMx, Tmean, Tm, Tx, NDVIx | 0.81 | 0.589 | 0.347 | 7 | 0.945 | Illu Ababora_W | |
Maize | W_ Arsi | ArealRF, VPDx, Tmean, Tm, NDVIx | 0.89 | 0.440 | 0.193 | 5 | 0.971 | West Arsi_M |
Wheat | ArealRF, VPDm, VPDx, Tmean, Tx, NDVIx | 0.92 | 0.410 | 0.168 | 3 | 0.98 | West Arsi_W | |
Maize | N Shewa | ArealRF, VPDm, VPDMx, Tmean, Tm, NDVIx | 0.83 | 0.459 | 0.211 | 9 | 0.952 | North Shewa_M |
Wheat | ArealRF, VPDMx, Tx, Tm, NDVIx | 0.77 | 0.476 | 0.227 | 11 | 0.929 | North Shewa_W | |
Maize | S W Shewa | ArealRF, VPDx, Tmean, Tx, NDVIx | 0.74 | 0.746 | 0.557 | 8 | 0.92 | South west Shewa_M |
Wheat | ArealRF, VPDm, VPDx, Tmean, Tx, Tm, NDVIx | 0.74 | 0.696 | 0.484 | 4 | 0.918 | South west Shewa_W | |
Maize | E Hararge | ArealRF, VPDm, VPDx, Tmean, Tx, Tm | 0.82 | 0.288 | 0.083 | 9 | 0.949 | East Hararge_M |
Wheat | ArealRF, VPDm, VPDMx, Tmean, Tm, Tx, NDVIx | 0.52 | 0.615 | 0.378 | 7 | 0.813 | East Hararge_W | |
Maize | W Hararge | ArealRF, VPDm, Tmean, Tx, NDVIx | 0.76 | 0.329 | 0.109 | 11 | 0.926 | West Hararge_M |
Wheat | ArealRF, VPDm, Tmean, Tx, NDVIx | 0.56 | 0.219 | 0.048 | 11 | 0.834 | West Hararge_W | |
Maize | E Wellega | ArealRF, VPDm, VPDx, Tmean, Tx, Tm | 0.77 | 0.742 | 0.551 | 9 | 0.929 | East Wellega_M |
Wheat | ArealRF, VPDm, VPDMx, Tmean, Tm, NDVIx | 0.72 | 0.291 | 0.085 | 4 | 0.913 | East Wellega_W | |
Maize | K_Wellega | VPDm, VPDx, Tm, NDVIx | 0.89 | 0.411 | 0.169 | 7 | 0.969 | Kellem Wellega_M |
Wheat | ArealRF, VPDm, VPDx | 0.93 | 0.154 | 0.024 | 4 | 0.982 | Kellem Wellega_W | |
Maize | Horo Guduru | ArealRF, VPDm, VPDMx, NDVIx | 0.82 | 0.446 | 0.199 | 7 | 0.948 | Horo Guduru _M |
Wheat | VPDMx, Tmean, Tx, NDVIx | 0.79 | 0.408 | 0.167 | 7 | 0.939 | Horo Guduru _W |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassa, A.K.; Zeng, H.; Wu, B.; Zhang, M.; Tsehai, K.K.; Qin, X.; Gebremicael, T.G. Integrating Climate Data and Remote Sensing for Maize and Wheat Yield Modelling in Ethiopia’s Key Agricultural Region. Remote Sens. 2025, 17, 491. https://doi.org/10.3390/rs17030491
Kassa AK, Zeng H, Wu B, Zhang M, Tsehai KK, Qin X, Gebremicael TG. Integrating Climate Data and Remote Sensing for Maize and Wheat Yield Modelling in Ethiopia’s Key Agricultural Region. Remote Sensing. 2025; 17(3):491. https://doi.org/10.3390/rs17030491
Chicago/Turabian StyleKassa, Asfaw Kebede, Hongwei Zeng, Bingfang Wu, Miao Zhang, Kibebew Kibret Tsehai, Xingli Qin, and Tesfay G. Gebremicael. 2025. "Integrating Climate Data and Remote Sensing for Maize and Wheat Yield Modelling in Ethiopia’s Key Agricultural Region" Remote Sensing 17, no. 3: 491. https://doi.org/10.3390/rs17030491
APA StyleKassa, A. K., Zeng, H., Wu, B., Zhang, M., Tsehai, K. K., Qin, X., & Gebremicael, T. G. (2025). Integrating Climate Data and Remote Sensing for Maize and Wheat Yield Modelling in Ethiopia’s Key Agricultural Region. Remote Sensing, 17(3), 491. https://doi.org/10.3390/rs17030491