Lidar Doppler Tomography Focusing Error Analysis and Focusing Method for Targets with Unknown Rotational Speed
Abstract
:1. Introduction
2. Principles of Lidar Doppler Tomography
2.1. Signal Model
2.2. Imaging Method
3. Focusing Error Analysis
3.1. Measurement Matrix Model
3.2. Error Analysis of Measurement Matrix
3.3. Simulation of the Point Target Imaging
3.4. Simulation of the Extended Target Imaging
4. Rotation Speed Estimation Methods
4.1. Analysis of Rényi Entropy
4.2. Image Filtering Method
4.3. Parameter Estimation Based on Rényi Entropy Minimization
4.3.1. Time Frequency Analysis
4.3.2. Rough Estimate of Rotation Speed
4.3.3. Accurate Estimation of Rotation Speed
5. Experimental Results
5.1. Experimental Setup
5.2. Image Quality Evaluation Index
5.2.1. Image Peakness
5.2.2. Natural Image Quality Evaluator
5.2.3. Equivalent Number of Looks
5.3. Imaging Results of Star Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AOM | Acousto-optic Modulator |
BPD | Balanced Photodetector |
DTI | Doppler-Time-Intensity |
EDFA | Erbium-Doped Fiber Amplifier |
ENL | Equivalent Number of Looks |
FBP | Filtered back-projection |
IP | Image Peakness |
LDT | Lidar Doppler tomography |
MSE | Mean Square Error |
MVG | Multivariate Gaussian |
NIQE | Natural Image Quality Evaluator |
PSNR | Peak Signal-to-noise Ratio |
SAR | Synthetic Aperture Radar |
SNR | Signal-to-noise Ratio |
STFT | Short-time Fourier Transform |
References
- Song, A.; Jin, K.; Xu, C.; Li, J.; Guo, Y.; Wei, K. Subcarrier modulation based phase-coded coherent lidar. Opt. Express 2023, 32, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jin, K.; Xu, C.; Song, A.; Liu, D.; Cui, H.; Wang, S.; Wei, K. Adaptive motion error compensation method based on bat algorithm for maneuvering targets in inverse synthetic aperture LiDAR imaging. Opt. Eng. 2023, 62, 093103. [Google Scholar] [CrossRef]
- Xu, C.; Jin, K.; Jiang, C.; Li, J.; Song, A.; Wei, K.; Zhang, Y. Amplitude compensation using homodyne detection for inverse synthetic aperture LADAR. Appl. Opt. 2021, 60, 10594–10599. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Jiang, Z.; Jin, Z.; Zhang, Z.; Zhang, X.; Guo, L.; Hu, Y. Reflective tomography LiDar image reconstruction for long distance non-cooperative target. Remote Sens. 2022, 14, 3310. [Google Scholar] [CrossRef]
- Shi, L.; Hu, Y.h.; Zhao, N.x.; Yu, L. Research on effect of reconstructed image quality in laser reflective tomography imaging. In Proceedings of the Optical Measurement Technology and Instrumentation, Edinburgh, UK, 26 June–1 July 2016; SPIE: Pune, India, 2016; Volume 10155, pp. 435–440. [Google Scholar]
- Andersen, A.H.; Kak, A.C. Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm. Ultrason. Imaging 1984, 6, 81–94. [Google Scholar] [CrossRef]
- Jin, X.; Sun, J.; Yan, Y.; Zhou, Y.; Liu, L. Imaging resolution analysis in limited-view Laser Radar reflective tomography. Opt. Commun. 2012, 285, 2575–2579. [Google Scholar] [CrossRef]
- Chen, J.; Sun, H.; Zhao, Y.; Shan, C. Typical influencing factors analysis of laser reflection tomography imaging. Optik 2019, 189, 1–8. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Y.; Wang, Y.; Shen, S.; Fang, J.; Liu, Y.; Han, F. Determining the limiting conditions of sampling interval and sampling angle for laser reflective tomography imaging in sensing targets with typical shapes. Opt. Commun. 2022, 519, 128413. [Google Scholar] [CrossRef]
- Zhang, X.; Han, F.; Shen, S.; Wang, Y.; Xu, S.; Dong, X.; Hu, Y. Target region extraction and segmentation algorithm for reflective tomography Lidar image. IET Image Process. 2023, 17, 1001–1009. [Google Scholar] [CrossRef]
- García, J.M.; Thurn, K.; Vossiek, M. Characterization of rotating objects with tomographic reconstruction of multiaspect scattered signals. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3284–3291. [Google Scholar] [CrossRef]
- Mensa, D.L.; Halevy, S.; Wade, G. Coherent Doppler tomography for microwave imaging. Proc. IEEE 1983, 71, 254–261. [Google Scholar] [CrossRef]
- Fliss, G.G. Tomographic radar imaging of rotating structures. In Proceedings of the Synthetic Aperture Radar, Virtual, 1–3 November 1992; SPIE: Pune, India; Volume 1630, pp. 199–207. [Google Scholar]
- Sun, H.; Feng, H.; Lu, Y. High resolution radar tomographic imaging using single-tone CW signals. In Proceedings of the 2010 IEEE Radar Conference, Arlington, VA, USA, 10–14 May 2010; pp. 975–980. [Google Scholar]
- Mo, D.; Wang, N.; Wang, R.; Song, Z.Q.; Li, G.Z.; Wu, Y.R. Single-frequency LADAR super-resolution Doppler tomography for extended targets. Opt. Express 2019, 27, 12923–12938. [Google Scholar] [CrossRef] [PubMed]
- Goldman, L.W. Principles of CT and CT technology. J. Nucl. Med. Technol. 2007, 35, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Li, K.; Jiang, W.; Li, X.; Kuang, G.; Zhu, H. A new method of micro-motion parameters estimation based on cyclic autocorrelation function. Sci. China Inf. Sci. 2013, 56, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.X.; Li, X.; Zhuang, Z.W. Estimation of micro-motion parameters based on micro-Doppler. IET Signal Process. 2010, 4, 213–217. [Google Scholar] [CrossRef]
- Fang, X.; Xiao, G. Rotor blades micro-Doppler feature analysis and extraction of small unmanned rotorcraft. IEEE Sens. J. 2020, 21, 3592–3601. [Google Scholar] [CrossRef]
- Zhang, Q.; Yeo, T.S.; Tan, H.S.; Luo, Y. Imaging of a moving target with rotating parts based on the Hough transform. IEEE Trans. Geosci. Remote Sens. 2007, 46, 291–299. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Xiang, X.; Li, Y.; Chen, G. Enhanced micro-Doppler feature analysis for drone detection. In Proceedings of the 2021 IEEE Radar Conference (RadarConf21), Atlanta, GA, USA, 8–14 May 2021; pp. 1–4. [Google Scholar]
- Qin, X.; Deng, B.; Wang, H. Micro-Doppler feature extraction of rotating structures of aircraft targets with terahertz radar. Remote Sens. 2022, 14, 3856. [Google Scholar] [CrossRef]
- Ran, L.; Xie, R.; Liu, Z.; Zhang, L.; Li, T.; Wang, J. Simultaneous range and cross-range variant phase error estimation and compensation for highly squinted SAR imaging. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4448–4463. [Google Scholar] [CrossRef]
- Beylkin, G. Discrete radon transform. IEEE Trans. Acoust. Speech, Signal Process. 1987, 35, 162–172. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, J.; Jin, X.; Zhou, Y.; Zhi, Y.; Liu, L. Experimental research of circular incoherently synthetic aperture imaging ladar using chirped-laser and heterodyne detection. Chin. Opt. Lett. 2012, 10, 091101. [Google Scholar] [CrossRef]
- Lauritsch, G.; Härer, W.H. Theoretical framework for filtered back projection in tomosynthesis. In Proceedings of the Medical Imaging 1998: Image Processing, San Diego, CA, USA, 21–26 February 1998; SPIE: Pune, India; Volume 3338, pp. 1127–1137. [Google Scholar]
- Toft, P.A. The Radon Transform-Theory and Implementation; DTU Library: Kongens Lyngby, Denmark, 1996. [Google Scholar]
- Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800–801. [Google Scholar] [CrossRef]
- Joshi, K.; Yadav, R.; Allwadhi, S. PSNR and MSE based investigation of LSB. In Proceedings of the 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), New Delhi, India, 11–13 March 2016; pp. 280–285. [Google Scholar]
- Munoz-Ferreras, J.; Perez-Martinez, F.; Datcu, M. Generalisation of inverse synthetic aperture radar autofocusing methods based on the minimisation of the Renyi entropy. IET Radar Sonar Navig. 2010, 4, 586–594. [Google Scholar] [CrossRef]
- Durak, L.; Arikan, O. Short-time Fourier transform: Two fundamental properties and an optimal implementation. IEEE Trans. Signal Process. 2003, 51, 1231–1242. [Google Scholar] [CrossRef]
- Zhao, F.; Huang, Q.; Gao, W. Image matching by normalized cross-correlation. In Proceedings of the 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France, 14–19 May 2006; Volume 2, p. II. [Google Scholar]
- Sarvaiya, J.N.; Patnaik, S.; Bombaywala, S. Image registration by template matching using normalized cross-correlation. In Proceedings of the 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies, Bangalore, India, 28–29 December 2009; pp. 819–822. [Google Scholar]
- Feichtenhofer, C.; Fassold, H.; Schallauer, P. A perceptual image sharpness metric based on local edge gradient analysis. IEEE Signal Process. Lett. 2013, 20, 379–382. [Google Scholar] [CrossRef]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2012, 20, 209–212. [Google Scholar] [CrossRef]
- Anfinsen, S.N.; Doulgeris, A.P.; Eltoft, T. Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3795–3809. [Google Scholar] [CrossRef]
Index | Rough Imaging | Proposed Method |
---|---|---|
IP | 0.0119 | 0.0120 |
NIQE | 8.6896 | 7.4559 |
ENL | 0.4285 | 0.4176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xu, C.; Liu, D.; Song, A.; Li, J.; Han, D.; Jin, K.; Guo, Y.; Wei, K. Lidar Doppler Tomography Focusing Error Analysis and Focusing Method for Targets with Unknown Rotational Speed. Remote Sens. 2025, 17, 506. https://doi.org/10.3390/rs17030506
Li Y, Xu C, Liu D, Song A, Li J, Han D, Jin K, Guo Y, Wei K. Lidar Doppler Tomography Focusing Error Analysis and Focusing Method for Targets with Unknown Rotational Speed. Remote Sensing. 2025; 17(3):506. https://doi.org/10.3390/rs17030506
Chicago/Turabian StyleLi, Yutang, Chen Xu, Dengfeng Liu, Anpeng Song, Jian Li, Dongzhe Han, Kai Jin, Youming Guo, and Kai Wei. 2025. "Lidar Doppler Tomography Focusing Error Analysis and Focusing Method for Targets with Unknown Rotational Speed" Remote Sensing 17, no. 3: 506. https://doi.org/10.3390/rs17030506
APA StyleLi, Y., Xu, C., Liu, D., Song, A., Li, J., Han, D., Jin, K., Guo, Y., & Wei, K. (2025). Lidar Doppler Tomography Focusing Error Analysis and Focusing Method for Targets with Unknown Rotational Speed. Remote Sensing, 17(3), 506. https://doi.org/10.3390/rs17030506