Advanced Deep Learning Approaches for Forecasting High-Resolution Fire Weather Index (FWI) over CONUS: Integration of GNN-LSTM, GNN-TCNN, and GNN-DeepAR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. FWI Calculation
2.3. Model Development
2.3.1. GNN-TCNN, GNN-LSTM, GNN-DeepAR, and Random Forest
2.3.2. Model Training
Training Pipeline of Hybrid Models
Hyperparameters and Computational Setup
Model Evaluation
Sensitivity Analysis
3. Results
3.1. Descriptive Statistics of FWI Across CONUS Regions (2014–2023)
3.2. Maximum FWI Days and Regional Peaks
3.3. Seasonal Variations in Fire Weather Index Across the CONUS
3.3.1. Monthly and Annual Trends Across Regions
3.3.2. Spatial Distribution of Seasonal Fire Weather
3.4. Hotspots of High FWI and Risk Clustering Across the CONUS
3.5. Model Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burke, M.; Driscoll, A.; Heft-Neal, S.; Xue, J.; Burney, J.; Wara, M. The changing risk and burden of wildfire in the United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2011048118. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.K.; Wang, J.; Feng, Y. US wildfire potential: A historical view and future projection using high-resolution climate data. Environ. Res. Lett. 2021, 16, 034060. [Google Scholar] [CrossRef]
- Nielsen-Pincus, M.; Moseley, C.; Gebert, K. Job growth and loss across sectors and time in the western US: The impact of large wildfires. For. Pol. Econ. 2014, 38, 199–206. [Google Scholar] [CrossRef]
- Liu, J.C.; Mickley, L.J.; Sulprizio, M.P.; Dominici, F.; Yue, X.; Ebisu, K.; Anderson, G.B.; Khan, R.F.; Bravo, M.A.; Bell, M.L. Particulate air pollution from wildfires in the Western US under climate change. Clim. Change 2016, 138, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, D.L.; Crosman, E.T.; Benney, T.M.; Anderson, C.; Gonzales, S.A. A Preliminary Case Study on the Compounding Effects of Local Emissions and Upstream Wildfires on Urban Air Pollution. Fire 2024, 7, 184. [Google Scholar] [CrossRef]
- Towers, B.; Christianson, A.C.; Eriksen, C. Impacts of Wildfire on Children. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Manzello, S.L., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Yao, J.; Brauer, M.; Wei, J.; McGrail, K.M.; Johnston, F.H.; Henderson, S.B. Sub-daily exposure to fine particulate matter and ambulance dispatches during wildfire seasons: A case-crossover study in British Columbia, Canada. Environ. Health Perspect. 2020, 128, 067006. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Xu, R.; Yue, X.; Chen, G.; Yu, P.; Coêlho, M.S.; Saldiva, P.H.; Abramson, M.J.; Guo, Y.; Li, S. Short-term exposure to wildfire-related PM2.5 increases mortality risks and burdens in Brazil. Nat. Comm. 2022, 13, 7651. [Google Scholar] [CrossRef] [PubMed]
- Heft-Neal, S.; Driscoll, A.; Yang, W.; Shaw, G.; Burke, M. Associations between wildfire smoke exposure during pregnancy and risk of preterm birth in California. Environ. Res. 2022, 203, 111872. [Google Scholar] [CrossRef]
- Eisenman, D.P.; Galway, L.P. The mental health and well-being effects of wildfire smoke: A scoping review. BMC Public Health 2022, 22, 2274. [Google Scholar] [CrossRef]
- Chen, G.; Guo, Y.; Yue, X.; Xu, R.; Yu, W.; Ye, T.; Tong, S.; Gasparrini, A.; Bell, M.L.; Armstrong, B.; et al. All-cause, cardiovascular, and respiratory mortality and wildfire-related ozone: A multicountry two-stage time series analysis. Lancet Planet. Health 2024, 8, e452–e462. [Google Scholar] [CrossRef] [PubMed]
- Drüke, M.; Sakschewski, B.; von Bloh, W.; Billing, M.; Lucht, W.; Thonicke, K. Fire may prevent future Amazon forest recovery after large-scale deforestation. Comm. Earth Environ. 2023, 4, 248. [Google Scholar] [CrossRef]
- Gibson, C.M.; Chasmer, L.E.; Thompson, D.K.; Quinton, W.L.; Flannigan, M.D.; Olefeldt, D. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Comm. 2018, 9, 3041. [Google Scholar] [CrossRef]
- Weis, J.; Schallenberg, C.; Chase, Z.; Bowie, A.R.; Wojtasiewicz, B.; Perron, M.M.; Mallet, M.D.; Strutton, P.G. Southern Ocean phytoplankton stimulated by wildfire emissions and sustained by iron recycling. Geophys. Res. Lett. 2022, 49, e2021GL097538. [Google Scholar] [CrossRef]
- Hantson, S.; Arneth, A.; Harrison, S.P.; Kelley, D.I.; Prentice, I.C.; Rabin, S.S.; Archibald, S.; Mouillot, F.; Arnold, S.R.; Artaxo, P.; et al. The status and challenge of global fire modeling. Biogeosciences 2016, 13, 3359–3375. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Field, R.D.; Spessa, A.C.; Aziz, N.A.; Camia, A.; Cantin, A.; Carr, R.; De Groot, W.J.; Dowdy, A.J.; Flannigan, M.D.; Manomaiphiboon, K.; et al. Development of a global fire weather database. Nat. Hazards Earth Syst. Sci. 2015, 15, 1407–1423. [Google Scholar] [CrossRef]
- Roads, J.; Tripp, P.; Juang, H.; Wang, J.; Fujioka, F.; Chen, S. NCEP–ECPC monthly to seasonal US fire danger forecasts. Int. J. Wildland Fire 2010, 19, 399–414. [Google Scholar] [CrossRef]
- Coen, J.L.; Schroeder, W.; Conway, S.; Tarnay, L. Computational modeling of extreme wildland fire events: A synthesis of scientific understanding with applications to forecasting, land management, and firefighter safety. J. Comp. Sci. 2020, 45, 101152. [Google Scholar] [CrossRef]
- Ham, Y.G.; Kim, J.H.; Luo, J.J. Deep learning for multi-year ENSO forecasts. Nature 2019, 573, 568–572. [Google Scholar] [CrossRef]
- Sayad, Y.O.; Mousannif, H.; Al Moatassime, H. Predictive modeling of wildfires: A new dataset and machine learning approach. Fire Saf. J. 2019, 104, 130–146. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Son, R.; Ma, P.L.; Wang, H.; Rasch, P.J.; Wang, S.Y.; Kim, H.; Jeong, J.H.; Lim, K.S.S.; Yoon, J.H. Deep learning provides substantial improvements to county-level fire weather forecasting over the western United States. J. Adv. Model. Earth Syst. 2022, 14, e2022MS002995. [Google Scholar] [CrossRef]
- Zhong, C.; Cheng, S.; Kasoar, M.; Arcucci, R. Reduced-order digital twin and latent data assimilation for global wildfire prediction. Nat. Hazards Earth Syst. Sci. 2023, 23, 1755–1768. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, C.; Li, W.; Gao, L.; Liu, L.; Fang, L.; Zhang, C. Fire danger forecasting using machine learning-based models and meteorological observation: A case study in Northeastern China. Multi. Tools Appl. 2024, 83, 61861–61881. [Google Scholar] [CrossRef]
- Shmuel, A.; Heifetz, E. Developing novel machine-learning-based fire weather indices. Mach. Learn. Sci. Technol. 2023, 4, 015029. [Google Scholar] [CrossRef]
- Agarwal, P.; Tang, J.; Narayanan, A.N.L.; Zhuang, J. Big data and predictive analytics in fire risk using weather data. Risk Anal. 2020, 40, 1438–1449. [Google Scholar] [CrossRef]
- Shahriar, S.A.; Kayes, I.; Hasan, K.; Salam, M.A.; Chowdhury, S. Applicability of machine learning in modeling of atmospheric particle pollution in Bangladesh. Air Qual. Atmos. Health 2020, 13, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; He, W.; Zheng, H.; Cui, Y.; Song, H.; Fu, S. Satellite-based ground PM2.5 estimation using a gradient boosting decision tree. Chemosphere 2021, 268, 128801. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, S.; Bhatia, T.; Verma, A.K. GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping. Nat. Hazards 2018, 92, 1399–1418. [Google Scholar] [CrossRef]
- Tran, T.T.K.; Janizadeh, S.; Bateni, S.M.; Jun, C.; Kim, D.; Trauernicht, C.; Rezaie, F.; Giambelluca, T.W.; Panahi, M. Improving the prediction of wildfire susceptibility on Hawai’i Island, Hawai’i, using explainable hybrid machine learning models. J. Environ. Manag. 2024, 351, 119724. [Google Scholar] [CrossRef]
- Koo, Y.S.; Choi, Y.; Ho, C.H. Air Quality Forecasting Using Big Data and Machine Learning Algorithms. Asia-Pac. J. Atmos. Sci. 2023, 59, 529–530. [Google Scholar] [CrossRef]
- Kabir, M.K.; Ghosh, K.K.; Islam, M.F.U.; Uddin, J. Wildfire Prediction in the United States Using Time Series Forecasting Models. Ann. Emerg. Technol. Comput. (AETiC) 2024, 8, 32–42. [Google Scholar] [CrossRef]
- Graff, C.A.; Coffield, S.R.; Chen, Y.; Foufoula-Georgiou, E.; Randerson, J.T.; Smyth, P. Forecasting daily wildfire activity using Poisson regression. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4837–4851. [Google Scholar] [CrossRef]
- Dimri, R.; Choi, Y.; Salman, A.K.; Park, J.; Singh, D. AGATNet: An adaptive graph attention network for bias correction of CMAQ-forecasted PM2.5 concentrations over South Korea. J. Geophy. Res. Mach. Learn. Comput. 2024, 1, e2024JH000244. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, S.; Hu, J.; Kasoar, M.; Arcucci, R. Explainable Global Wildfire Prediction Models using Graph Neural Networks. arXiv 2024, arXiv:2402.07152. [Google Scholar]
- Zhao, S.; Prapas, I.; Karasante, I.; Xiong, Z.; Papoutsis, I.; Camps-Valls, G.; Zhu, X.X. Causal Graph Neural Networks for Wildfire Danger Prediction. arXiv 2024, arXiv:2403.08414. [Google Scholar]
- Varshney, Y.; Kumar, V.; Dubey, D.K.; Sharma, S. Forecasting Precision: The Role of Graph Neural Networks and Dynamic GNNs in Weather Prediction. J. Big Data Technol. Bus. Anal. 2024, 3, 28–33. [Google Scholar]
- Choi, J.W.; LaHaye, N.; Chen, Y.; Lee, H.; Gel, Y.R. Self-supervised contrastive learning for wildfire detection: Utility and limitations. In Advances in Machine Learning and Image Analysis for GeoAI; Elsevier: Amsterdam, The Netherlands, 2024; pp. 153–163. [Google Scholar]
- Li, J.; Crooks, J.; Murdock, J.; de Souza, P.; Hohsfield, K.; Obermann, B.; Stockman, T. A nested machine learning approach to short-term PM2.5 prediction in metropolitan areas using PM2.5 data from different sensor networks. Sci. Total Environ. 2023, 873, 162336. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Lin, P.; Liang, Y.; Gao, H.; Zhang, D.; Hu, G. A novel hybrid deep learning model for multi-step wind speed forecasting considering pairwise dependencies among multiple atmospheric variables. Energy 2023, 285, 129408. [Google Scholar] [CrossRef]
- Jiang, F.; Han, X.; Zhang, W.; Chen, G. Atmospheric PM2.5 prediction using DeepAR optimized by sparrow search algorithm with opposition-based and fitness-based learning. Atmosphere 2021, 12, 894. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Development and structure of the Canadian Forest Fire Weather Index System. For. Technol. Rep. 1987, 35, viii+37. [Google Scholar]
- Van Wagner, C.E.; Pickett, T.L. Equations and FORTRAN program for the Canadian Forest Fire Weather Index System. For. Technol. Rep. 1985, 33, iv+-18. [Google Scholar]
- Rodell, C.; Howard, R.; Jain, P.; Moisseeva, N.; Chui, T.; Stull, R. Forecasting Hourly Wildfire Risk: Enhancing Fire Danger Assessment using Numerical Weather Prediction. Weather. Forecast. 2024, 39(6), 925–941. [Google Scholar] [CrossRef]
- Thapa, L.H.; Saide, P.E.; Bortnik, J.; Berman, M.T.; da Silva, A.; Peterson, D.A.; Li, F.; Kondragunta, S.; Ahmadov, R.; James, E.; et al. Forecasting daily fire radiative energy using data-driven methods and machine learning techniques. J. Geophys. Res. Atmos. 2024, 129, e2023JD040514. [Google Scholar] [CrossRef]
- Very Strong Winds Spread Fires in Texas, Oklahoma, and Kansas. Available online: https://wildfiretoday.com/2021/12/15/very-strong-winds-spread-fires-in-texas-oklahoma-and-kansas/ (accessed on 15 October 2024).
- Bernhardt, J.; Carleton, A.M.; LaMagna, C. A comparison of daily temperature-averaging methods: Spatial variability and recent change for the CONUS. J. Clim. 2018, 31, 979–996. [Google Scholar] [CrossRef]
- Liu, C.; Ikeda, K.; Rasmussen, R.; Barlage, M.; Newman, A.J.; Prein, A.F.; Chen, F.; Chen, L.; Clark, M.; Dai, A.; et al. Continental-scale convection-permitting modeling of the current and future climate of North America. Clim. Dyn. 2017, 49, 71–95. [Google Scholar] [CrossRef]
- Xian, G.Z.; Loveland, T.; Munson, S.M.; Vogelmann, J.E.; Zeng, X.; Homer, C.J. Climate sensitivity to decadal land cover and land use change across the conterminous United States. Glob. Planet. Change 2020, 192, 103262. [Google Scholar] [CrossRef]
- Stambaugh, M.C.; Creacy, G.; Sparks, J.; Rooney, M. Three centuries of fire and forest vegetation transitions preceding Texas’ most destructive wildfire: Lost Pines or lost oaks? For. Ecol. Manag. 2017, 396, 91–101. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, J.; Smith, W.K.; Wang, X.; Gentine, P.; Scott, R.L.; Migliavacca, M.; Jeong, S.; Litvak, M.; Zhou, S. Satellite solar-induced chlorophyll fluorescence tracks physiological drought stress development during 2020 southwest US drought. Glob. Change Biol. 2023, 29, 3395–3408. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiao, J.; Kimball, J.S.; Reichle, R.H.; Scott, R.L.; Litvak, M.E.; Bohrer, G.; Frankenberg, C. Synergistic use of SMAP and OCO-2 data in assessing the responses of ecosystem productivity to the 2018 US drought. Remote Sens. Environ. 2020, 251, 112062. [Google Scholar] [CrossRef]
- Osman, M.; Zaitchik, B.F.; Winstead, N.S. Cascading drought-heat dynamics during the 2021 Southwest United States heatwave. Geophys. Res. Lett. 2022, 49, e2022GL099265. [Google Scholar] [CrossRef]
- Hopke, J.E. Connecting extreme heat events to climate change: Media coverage of heat waves and wildfires. Environ. Comm. 2020, 14, 492–508. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing wildfire, changing forests: The effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 1–26. [Google Scholar] [CrossRef]
- Weber, K.T.; Yadav, R. Spatiotemporal trends in wildfires across the Western United States (1950–2019). Remote Sens. 2020, 12, 2959. [Google Scholar] [CrossRef]
- Fasullo, J.T.; Otto-Bliesner, B.L.; Stevenson, S. ENSO’s changing influence on temperature, precipitation, and wildfire in a warming climate. Geophys. Res. Lett. 2018, 45, 9216–9225. [Google Scholar] [CrossRef]
- Gutierrez, A.A.; Hantson, S.; Langenbrunner, B.; Chen, B.; Jin, Y.; Goulden, M.L.; Randerson, J.T. Wildfire response to changing daily temperature extremes in California’s Sierra Nevada. Sci. Adv. 2021, 7, eabe6417. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Harrington, J.B. A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953–80). J. Appl. Meteorol. Clim. 1988, 27, 441–452. [Google Scholar] [CrossRef]
- Jahdi, R.; Darvishsefat, A.A.; Etemad, V.; Mostafavi, M.A. Wind effect on wildfire and simulation of its spread (case study: Siahkal forest in northern Iran). J. Agric. Sci. Technol. 2014, 16, 1109–1121. [Google Scholar]
Hyperparameter | GNN-TCNN | GNN-LSTM | GNN-DeepAR |
---|---|---|---|
Learning Rate | 0.001 | 0.001 | 0.001 |
Batch Size | 64 | 64 | 64 |
Optimizer | Adam | Adam | Adam |
Dropout Rate | 0.2 | 0.2 | 0.2 |
GNN Layers | 3 | 3 | 3 |
GNN Hidden Dimension | 64 | 64 | 64 |
Temporal Layers | 3 (Conv1D) | 2 (LSTM) | 2 (GRU) |
Temporal Hidden Dim. | 128 | 128 | 128 |
Kernel Size (TCNN) | 333 | - | - |
Dilation Factor (TCNN) | 1, 2, 41, 2, 41, 2, 4 | - | - |
Sequence Length | 14 days | 14 days | 14 days |
Epochs | 100 | 100 | 100 |
Region | Mean | Std | Max | Min | Date of Max FWI | Latitude | Longitude |
---|---|---|---|---|---|---|---|
Northeast | 2.65 | 3.86 | 57.44 | 0.0 | 6 September 2016 | 39.008 | −77.188 |
Northern Rockies | 19.64 | 16.60 | 194.23 | 0.0 | 7 July 2020 | 42.248 | −108.112 |
Northwest | 19.29 | 18.19 | 171.64 | 0.0 | 7 September 2020 | 47.0 | −118.768 |
Ohio Valley | 5.47 | 7.35 | 83.08 | 0.0 | 8 October 2016 | 35.264 | −89.688 |
South | 16.60 | 18.65 | 385.19 | 0.0 | 15 December 2021 | 38.0 | −101.272 |
Southeast | 5.85 | 8.09 | 276.41 | 0.0 | 10 September 2017 | 25.508 | −81.184 |
Southwest | 33.88 | 23.25 | 279.99 | 0.0 | 15 December 2021 | 38.0 | −102.064 |
Upper Midwest | 5.97 | 6.91 | 84.11 | 0.0 | 14 September 2017 | 41.204 | −95.908 |
West | 36.60 | 24.06 | 204.24 | 0.0 | 8 September 2020 | 35.264 | −114.988 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahriar, S.A.; Choi, Y.; Islam, R. Advanced Deep Learning Approaches for Forecasting High-Resolution Fire Weather Index (FWI) over CONUS: Integration of GNN-LSTM, GNN-TCNN, and GNN-DeepAR. Remote Sens. 2025, 17, 515. https://doi.org/10.3390/rs17030515
Shahriar SA, Choi Y, Islam R. Advanced Deep Learning Approaches for Forecasting High-Resolution Fire Weather Index (FWI) over CONUS: Integration of GNN-LSTM, GNN-TCNN, and GNN-DeepAR. Remote Sensing. 2025; 17(3):515. https://doi.org/10.3390/rs17030515
Chicago/Turabian StyleShahriar, Shihab Ahmad, Yunsoo Choi, and Rashik Islam. 2025. "Advanced Deep Learning Approaches for Forecasting High-Resolution Fire Weather Index (FWI) over CONUS: Integration of GNN-LSTM, GNN-TCNN, and GNN-DeepAR" Remote Sensing 17, no. 3: 515. https://doi.org/10.3390/rs17030515
APA StyleShahriar, S. A., Choi, Y., & Islam, R. (2025). Advanced Deep Learning Approaches for Forecasting High-Resolution Fire Weather Index (FWI) over CONUS: Integration of GNN-LSTM, GNN-TCNN, and GNN-DeepAR. Remote Sensing, 17(3), 515. https://doi.org/10.3390/rs17030515