Land-Cover Phenologies and Their Relation to Climatic Variables in an Anthropogenically Impacted Mediterranean Coastal Area
Abstract
:1. Introduction
2. Material and Methods
Code | Land-covers | Surface coverage (%) |
CLC11 | Urban | 6.93 |
CLC12 | Industrial, commercial and transport unit | 1.79 |
CLC13 | Mine, dump and construction sites | 1.28 |
CLC14 | Artificial, non-agricultural vegetated | 0.30 |
CLC21 | Arable land | 6.43 |
CLC22 | Permanent crops | 19.96 |
CLC24 | Heterogeneous agricultural areas | 39.29 |
CLC31 | Forest | 1.52 |
CLC32 | Shrub and/or herbaceous vegetation associations | 16.17 |
CLC33 | Open spaces with little or no vegetation | 0.33 |
CLC41 | Inland wetlands | 0.15 |
CLC42 | Coastal wetlands | 3.34 |
CLC51 | Inland water | 0.39 |
CLC52 | Marine waters | 2.13 |
2.1. MODIS-EVI Time Serie
2.2. Detection and Quantification of Time Series Anomalies
2.3. Fourier Transform
2.4. Statistical Analysis
3. Results and Discussion
3.1. Land-Covers and Average EVI for the Study Area
3.2. Overview of EVI and Climatic Variables Time Series
Years | CLC21 | CLC22 | CLC24 | CLC31 | CLC32 | CLC33 | CLC41 | CLC42 |
2001 | 0.26 ± 0.04a | 0.25 ± 0.03a | 0.24 ± 0.03ab | 0.20 ± 0.03c | 0.20 ± 0.02a | 0.14 ± 0.02b | 0.19 ± 0.02a | 0.13 ± 0.01ab |
2002 | 0.26 ± 0.04a | 0.25 ± 0.03a | 0.24 ± 0.03ab | 0.18 ± 0.02abc | 0.21 ± 0.02ab | 0.08 ± 0.03a | 0.22 ± 0.02b | 0.13 ± 0.02b |
2003 | 0.24 ± 0.03a | 0.24 ± 0.02a | 0.23 ± 0.03ab | 0.18 ± 0.02ab | 0.19 ± 0.02a | 0.07 ± 0.03a | 0.22 ± 0.03b | 0.12 ± 0.02ab |
2004 | 0.26 ± 0.04a | 0.25 ± 0.03a | 0.24 ± 0.03ab | 0.18 ± 0.02ab | 0.21 ± 0.03ab | 0.07 ± 0.03a | 0.23 ± 0.03b | 0.13 ± 0.01b |
2005 | 0.24 ± 0.03a | 0.24 ± 0.02a | 0.22 ± 0.02a | 0.16 ± 0.02a | 0.19 ± 0.02a | 0.06 ± 0.02a | 0.22 ± 0.02b | 0.12 ± 0.01a |
2006 | 0.24 ± 0.04a | 0.23 ± 0.02a | 0.23 ± 0.03ab | 0.16 ± 0.02a | 0.20 ± 0.03a | 0.06 ± 0.02a | 0.23 ± 0.03b | 0.12 ± 0.01a |
2007 | 0.27 ± 0.04a | 0.25 ± 0.03a | 0.25 ± 0.03b | 0.20 ± 0.02bc | 0.22 ± 0.03b | 0.07 ± 0.02a | 0.24 ± 0.02b | 0.13 ± 0.01b |
P-values | 0.01 | 0.037 | 0.070 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Year | Tmean | Tmax | Tmin | Rainfall | Radiation | ETP |
2001 | 17.8 ± 0.4a | 23.9 ± 0.7a | 12.5 ± 1.3a | 17.9 ± 3.3b | 272.2 ± 8.1a | 55.4 ± 3.1a |
2002 | 17.8 ± 0.7a | 23.8 ± 1.1a | 12.7 ± 1.5a | 10.7 ± 1.4ab | 273.0 ± 25.1a | 55.0 ± 6.3a |
2003 | 17.7 ± 0.5a | 23.5 ± 0.9a | 12.4 ± 1.1a | 12.7 ± 1.4ab | 258.4 ± 3.6a | 51.9 ± 2.6a |
2004 | 17.3 ± 0.7a | 23.2 ± 1.0a | 14.2 ± 4.4a | 15.2 ± 2.9b | 254.8 ± 9.6a | 49.9 ± 3.1a |
2005 | 16.7 ± 0.7a | 22.8 ± 1.0a | 11.4 ± 1.2a | 6.9 ± 3.1a | 270.9 ± 12.1a | 51.0 ± 3.9a |
2006 | 17.7 ± 0.7a | 23.6 ± 1.0a | 12.4 ± 1.1a | 12.7 ± 2.3ab | 262.7 ± 14.7a | 52.2 ± 2.7a |
2007 | 17.2 ± 0.9a | 23.2 ± 1.1a | 11.9 ± 1.1a | 17.7 ± 2.5b | 261.9 ± 9.8a | 50.6 ± 4.0a |
P-values (year) | 0.780 | 0.860 | 0.200 | <0.001 | 0.840 | 0.640 |
P-values (location) | 0.120 | 0.010 | <0.001 | 0.490 | 0.300 | 0.040 |
3.3. Time Series Anomalies
Year | CLC21 | CLC22 | CLC24 | CLC31 | CLC32 | CLC33 | CLC41 | CLC42 | Tmean | Rainfall | Radiation |
2001 | −0.071 | −0.073 | −0.098 | −0.827 | 0.235 | −1.000 | 0.990 | −0.261 | −0.081 | −0.307 | −0.094 |
2002 | −0.243 | −0.276 | −0.236 | −0.266 | −0.373 | −0.130 | 0.017 | −0.428 | −0.042 | 0.308 | 0.048 |
2003 | 0.426 | 0.328 | 0.361 | 0.242 | 0.585 | 0.416 | −0.013 | 0.142 | −0.048 | 0.047 | 0.044 |
2004 | −0.333 | −0.258 | −0.279 | 0.229 | −0.248 | 0.478 | −0.283 | −0.477 | 0.030 | −0.118 | 0.094 |
2005 | 0.557 | 0.461 | 0.733 | 0.902 | 0.719 | 0.811 | −0.007 | 0.885 | 0.133 | 0.680 | −0.091 |
2006 | 0.326 | 0.458 | 0.327 | 0.725 | 0.292 | 0.853 | −0.416 | 0.746 | −0.045 | 0.042 | 0.000 |
2007 | −0.439 | −0.376 | −0.490 | −0.688 | −0.719 | 0.341 | −0.651 | −0.366 | 0.036 | −0.247 | 0.008 |
Sum | 0.224 | 0.263 | 0.318 | 0.316 | 0.492 | 1.769 | −0.362 | 0.241 | −0.017 | 0.405 | 0.009 |
3.4. Fourier Transform Parameter
Variables | A0 | A1 | A2 | A3 | P1 | P2 | P3 |
CLC21 | 0.25 ± 0.01 | 0.06 ± 0.01 | 0.03 ± 0.00 | 0.02 ± 0.00 | 1.7 ± 0.37 | 3.26 ± 0.43 | 3.06 ± 0.68 |
CLC22 | 0.25 ± 0.01 | 0.04 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 1.92 ± 0.30 | 3.08 ± 0.57 | 2.96 ± 0.65 |
CLC24 | 0.23 ± 0.01 | 0.04 ± 0.01 | 0.02 ± 0.00 | 0.02 ± 0.00 | 1.82 ± 0.34 | 3.11 ± 0.47 | 3.00 ± 0.61 |
CLC31 | 0.18 ± 0.01 | 0.03 ± 0.00 | 0.02 ± 0.00 | 0.01 ± 0.00 | 2.02 ± 0.59 | 3.07 ± 0.58 | 2.88 ± 0.81 |
CLC32 | 0.20 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.00 | 0.01 ± 0.00 | 2.02 ± 0.42 | 3.12 ± 0.60 | 2.84 ± 0.72 |
CLC33 | 0.08 ± 0.03 | 0.02 ± 0.00 | 0.02 ± 0.01 | 0.01 ± 0.00 | 4.07 ± 0.76 | 2.6 ± 0.55 | 3.6 ± 0.62 |
CLC41 | 0.22 ± 0.01 | 0.04 ± 0.01 | 0.02 ± 0.00 | 0.01 ± 0.01 | 3.53 ± 0.84 | 2.95 ± 0.59 | 2.63 ± 1.30 |
CLC42 | 0.14 ± 0.01 | 0.04 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 3.29 ± 0.22 | 2.93 ± 0.30 | 3.14 ± 0.31 |
Tmean | 17.32 ± 0.43 | 7.92 ± 0.53 | 1.35 ± 0.64 | 0.88 ± 0.55 | 4.43 ± 0.14 | 2.92 ± 2.82 | 3.55 ± 2.25 |
Rainfall | 13.10 ± 4.28 | 7.22 ± 4.32 | 10.50 ± 5.03 | 5.60 ± 4.58 | 1.65 ± 0.85 | 4.55 ± 0.66 | 1.51 ± 1.54 |
Radiation | 260.56 ± 9.93 | 145.72 ± 9.65 | 18.65 ± 13.48 | 13.98 ± 9.26 | 5.03 ± 0.06 | 2.5 ± 1.70 | 4.84 ± 1.60 |
3.5. EVI and Climatic Time Series
CLC21 | CLC22 | CLC24 | CLC31 | CLC32 | CLC33 | CLC41 | CLC42 | Tmean | Rainfall | Radiation | ||
CLC21 | ATS | 0.000 | 0.000 | 0.000 | 0.000 | 0.052 | 0.042 | 0.177 | 0.000 | 0.093 | 0.000 | |
NDS | 0.000 | 0.000 | 0.058 | 0.001 | 0.351 | 0.768 | 0.006 | 0.716 | 0.154 | 0.344 | ||
FT-A | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.014 | 0.000 | ||
FT-P | 0.000 | 0.000 | 0.000 | 0.000 | 0.008 | 0.992 | 0.584 | 0.435 | 0.102 | 0.115 | ||
CLC22 | ATS | 0.000 | 0.000 | 0.000 | 0.000 | 0.050 | 0.010 | 0.534 | 0.000 | 0.064 | 0.000 | |
NDS | 0.000 | 0.001 | 0.038 | 0.005 | 0.266 | 0.916 | 0.002 | 0.771 | 0.231 | 0.383 | ||
FT-A | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.013 | 0.000 | ||
FT-P | 0.000 | 0.000 | 0.000 | 0.000 | 0.024 | 0.670 | 0.767 | 0.315 | 0.098 | 0.229 | ||
CLC24 | ATS | 0.000 | 0.000 | 0.000 | 0.000 | 0.078 | 0.019 | 0.221 | 0.000 | 0.041 | 0.000 | |
NDS | 0.000 | 0.001 | 0.033 | 0.002 | 0.300 | 0.794 | 0.004 | 0.509 | 0.085 | 0.312 | ||
FT-A | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.012 | 0.000 | ||
FT-P | 0.000 | 0.000 | 0.000 | 0.000 | 0.019 | 0.968 | 0.693 | 0.321 | 0.118 | 0.117 | ||
CLC31 | ATS | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.881 | 0.423 | 0.000 | 0.112 | 0.002 | |
NDS | 0.058 | 0.038 | 0.033 | 0.134 | 0.024 | 0.439 | 0.030 | 0.292 | 0.084 | 0.945 | ||
FT-A | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.009 | 0.000 | ||
FT-P | 0.000 | 0.000 | 0.000 | 0.000 | 0.032 | 0.351 | 0.515 | 0.409 | 0.128 | 0.237 | ||
CLC32 | ATS | 0.000 | 0.000 | 0.000 | 0.000 | 0.085 | 0.000 | 0.614 | 0.000 | 0.105 | 0.001 | |
NDS | 0.001 | 0.005 | 0.002 | 0.134 | 0.672 | 0.381 | 0.043 | 0.860 | 0.279 | 0.271 | ||
FT-A | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.011 | 0.000 | ||
FT-P | 0.000 | 0.000 | 0.000 | 0.000 | 0.052 | 0.527 | 0.774 | 0.385 | 0.094 | 0.083 | ||
CLC33 | ATS | 0.052 | 0.050 | 0.078 | 0.000 | 0.085 | 0.074 | 0.000 | 0.052 | 0.887 | 0.004 | |
NDS | 0.351 | 0.266 | 0.300 | 0.024 | 0.672 | 0.028 | 0.157 | 0.164 | 0.279 | 0.538 | ||
FT-A | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.008 | 0.000 | ||
FT-P | 0.008 | 0.024 | 0.019 | 0.032 | 0.052 | 0.846 | 0.044 | 0.256 | 0.004 | 0.020 | ||
CLC41 | ATS | 0.042 | 0.010 | 0.019 | 0.881 | 0.000 | 0.074 | 0.000 | 0.012 | 0.117 | 0.000 | |
NDS | 0.768 | 0.916 | 0.794 | 0.439 | 0.381 | 0.028 | 0.813 | 0.358 | 0.833 | 0.197 | ||
FT-A | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.021 | 0.000 | ||
FT-P | 0.992 | 0.670 | 0.968 | 0.351 | 0.527 | 0.846 | 0.044 | 0.747 | 0.128 | 0.281 | ||
CLC42 | ATS | 0.177 | 0.534 | 0.221 | 0.423 | 0.614 | 0.000 | 0.000 | 0.000 | 0.122 | 0.000 | |
NDS | 0.006 | 0.002 | 0.004 | 0.030 | 0.043 | 0.157 | 0.813 | 0.432 | 0.144 | 0.269 | ||
FT-A | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.015 | 0.000 | ||
FT-P | 0.584 | 0.767 | 0.693 | 0.515 | 0.774 | 0.044 | 0.044 | 0.044 | 0.010 | 0.035 | ||
Tmean | ATS | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.052 | 0.012 | 0.000 | 0.002 | 0.000 | |
NDS | 0.716 | 0.771 | 0.509 | 0.292 | 0.860 | 0.164 | 0.358 | 0.432 | 0.178 | 0.705 | ||
FT-A | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.035 | 0.000 | ||
FT-P | 0.435 | 0.315 | 0.321 | 0.409 | 0.385 | 0.256 | 0.747 | 0.044 | 0.285 | 0.307 | ||
Rainfall | ATS | 0.093 | 0.064 | 0.041 | 0.112 | 0.105 | 0.887 | 0.117 | 0.122 | 0.002 | 0.000 | |
NDS | 0.154 | 0.231 | 0.085 | 0.084 | 0.279 | 0.279 | 0.833 | 0.144 | 0.178 | 0.662 | ||
FT-A | 0.014 | 0.013 | 0.012 | 0.009 | 0.011 | 0.008 | 0.021 | 0.015 | 0.035 | 0.060 | ||
FT-P | 0.102 | 0.098 | 0.118 | 0.128 | 0.094 | 0.004 | 0.128 | 0.010 | 0.285 | 0.001 | ||
Radiation | ATS | 0.000 | 0.000 | 0.000 | 0.002 | 0.001 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | |
NDS | 0.344 | 0.383 | 0.312 | 0.945 | 0.271 | 0.538 | 0.197 | 0.269 | 0.705 | 0.662 | ||
FT-A | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.060 | ||
FT-P | 0.115 | 0.229 | 0.117 | 0.237 | 0.083 | 0.020 | 0.281 | 0.035 | 0.307 | 0.001 |
4. Conclusions
Acknowledgement
References and Notes
- Vitousek, P. Global environmental change: an introduction. Ann. Rev. Ecol. Syst. 1992, 23, 1–14. [Google Scholar] [CrossRef]
- Alonso, B.; Valladares, F. International Efforts on Global Change Research. In Earth Observation of Global Change. The Role of Satellite Remote Sensing in Monitoring the Global Environment; Chuvieco, E., Ed.; Springer: New York, NY, USA, 2008; pp. 1–21. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-being: General Synthesis; World Resources Institute: Washington, DC, WA, USA, 2005. [Google Scholar]
- Lambin, E.F.; Baulies, X.; Bockstael, N.; Fischer, G.; Krug, T.; Leemans, R.; Moran, E.F.; Rindfuss, R.R.; Sato, Y.; Skole, D.; Turner, B.L., II; Vogel, C. Land-Use and Land-Cover Change (LUCC) Implementation Strategy; IGBP Report No. 48/IHDP Report No 10; International Geosphere-Biosphere Programme (IGBP): Stockholm, Sweden, 1999. [Google Scholar]
- Richards, J.F. Land transformations. In The Earth as Transformed by Human Action: Global Change and Regional Changes in the Biosphere Over the Past 300 Years; Turner, B.L., II, Clark, W.C, Kates, R.W., Richards, J.F., Mathews, J.T., Meyer, W.B., Eds.; Cambridge University Press: New York, NY, USA, 1990. [Google Scholar]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; George, P.S.; Homewood, K.; Imbernon, J.; Leemans, R.; Li, X.; Moran, E.F.; Mortimore, M.; Ramakrishnan, P.S.; Richards, J.F.; Skånes, H.; Steffen, W.; Stone, G.D.; Svedin, U.; Veldkamp, T.A.; Vogel, C.; Xu, J. The causes of land-use and land-cover change: Moving beyond the myths. Global Environ. Change 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Sala, O.E.; Chapin, F.S., III; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; Leemans, R.; Lodge, D.M.; Mooney, H.A.; Oesterheld, M.; Poff, N.L.; Sykes, M.T.; Walker, B.H.; Walker, M.; Wall, D.H. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [PubMed]
- Lupo, F.; Linderman, M.; Vanacker, V.; Bartholomé, E.; Lambin, E.F. Categorization of land-cover change processes based on phenological indicators extracted from time series of vegetation index data. Int. J. Remote Sens. 2007, 28, 2469–2483. [Google Scholar] [CrossRef]
- Li, J.; Lewis, J.; Rowland, J.; Tappan, G.; Tieszen, L.L. Evaluation of land performance in Senegal using multi-temporal NDVI and rainfall series. J. Arid Environ. 2004, 59, 463–480. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Tucker, C.J.; Townshend, J.R.G.; Goff, T.E. African land-cover classification using satellite data. Science 1985, 227, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 1974; pp. 3010–3017.
- Huete, A.; Justice, C.; van Leeuwen, W. MODIS Vegetation Index (MOD 13). Algorithm Theoretical Basis Document; Version 3; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1999. [Google Scholar]
- Moody, A.; Johnson, D. Land-surface phenologies from AVHRR using the discrete Fourier transform. Remote Sens. Environ. 2001, 75, 305–323. [Google Scholar] [CrossRef]
- Justice, C.O.; Holben, B.N.; Gwynne, M.D. Monitoring East African vegetation using AVHRR data. Int. J. Remote Sens. 1986, 7, 1453–1474. [Google Scholar] [CrossRef]
- Barbosa, H.; Huete, A.; Baethgen, W. A 20-year study of NDVI variability over the Northeast Region of Brazil. J. Arid Environ. 2006, 67, 288–307. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Quiroz, R.A.; De Jong, S.M. Understanding precipitation patterns and land use interaction in Tibet using harmonic analysis of SPOT VGT-S10 NDVI time series. Int. J. Remote Sens. 2005, 26, 2281–2296. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Crop identification using harmonic analysis of time-series AVHRR NDVI data. Comput. Electron. Agr. 2002, 37, 127–139. [Google Scholar] [CrossRef]
- Azzali, S.; Menenti, M. Mapping vegetation-soil-climate complexes in southern Africa using temporal Fourier analysis of NOAA-AVHRR NDVI data. Int. J. Remote Sens. 2000, 21, 973–996. [Google Scholar] [CrossRef]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Mingwei, Z.; Qingbo, Z.; Zhongxin, C.; Jia, L.; Yong, Z.; Chongfa, C. Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data. Int. J. Appl. Earth Obs. 2008, 10, 476–485. [Google Scholar] [CrossRef]
- González-Loyarte, M.M.; Menenti, M.; Diblasi, A.M. Modelling bioclimate by means of Fourier analysis of NOAA-AVHRR NDVI time series in Western Argentina. Int. J. Climatol. 2008, 28, 1175–1188. [Google Scholar] [CrossRef]
- Westra, T.; De Wulf, R.R. Monitoring Sahelian floodplains using Fourier analysis of MODIS time-series data and artificial neural networks. Int. J. Remote Sens. 2007, 28, 1595–1610. [Google Scholar] [CrossRef]
- De Martonne, E. L'indice d'aridité. Bull. Assoc. Geogr. Fr. 1926, 9, 3–5. [Google Scholar] [CrossRef]
- UNEP. World Atlas of Desertification, 2nd ed.; United Nations Environment Programme (UNEP): Nairobi, Kenya, 1997. [Google Scholar]
- European Commission. Soil Atlas of Europe; Office for Official Publications of the European Communities: Luxembourg, Luxembourg, 2005. [Google Scholar]
- Melendez-Pastor, I.; Navarro-Pedreño, J.; Gómez, I.; Koch, M. Identifying optimal spectral bands to assess soil properties with VNIR radiometry in semi-arid soils. Geoderma 2008, 147, 126–132. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources, World Soil Resources Report 103, 2nd ed.; Food and Agriculture Organization of the United Nation (FAO): Rome, Italy, 2006. [Google Scholar]
- Liu, H.Q.; Huete, A. A Feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar]
- Anderson, L.O.; Malhi, Y.; Aragao, L.E.O.; Saatchi, S. Spatial patterns of the canopy stress during 2005 drought in Amazonia. In IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007; pp. 2294–2297.
- González-Loyarte, M.M.; Menenti, M. Impact of rainfall anomalies on Fourier parameters of NDVI time series of northwestern Argentina. Int. J. Remote Sens. 2008, 29, 1125–1152. [Google Scholar] [CrossRef]
- Briggs, W.L.; Henson, V.E. The DFT: An Owners’ Manual for the Discrete Fourier Transform; Society for Industrial Mathematics: Philadelphia, PA, USA, 1995. [Google Scholar]
- Davis, J.C. Statistics and Data Analysis in Geology, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1986. [Google Scholar]
- Rayner, J.N. An Introduction to Spectral Analysis; Pion Ltd.: London, UK, 1971. [Google Scholar]
- Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Harmonic analysis of time-series AVHRR NDVI data. Photogramm. Eng. Remote Sens. 2001, 67, 461–470. [Google Scholar]
- Melendez-Pastor, I.; Navarro-Pedreño, J.; Gómez, I.; Koch, M. Detecting drought induced environmental changes in a Mediterranean wetland by remote sensing. Appl. Geogr. 2010, 30, 254–262. [Google Scholar] [CrossRef]
- Ozesmi, S.; Bauer, M. Satellite remote sensing of wetlands. Wetlands Ecol. Manage. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Scharlemann, J.P.W.; Benz, D.; Hay, S.I.; Purse, B.V.; Tatem, A.J.; Wint, G.R.W.; Rogers, D.J. Global data for ecology and epidemiology: a novel algorithm for temporal fourier processing MODIS data. PLoS ONE 2008, 3, e1408:1–e1408:13. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Melendez-Pastor, I.; Navarro-Pedreño, J.; Koch, M.; Gómez, I.; Hernández, E.I. Land-Cover Phenologies and Their Relation to Climatic Variables in an Anthropogenically Impacted Mediterranean Coastal Area. Remote Sens. 2010, 2, 697-716. https://doi.org/10.3390/rs2030697
Melendez-Pastor I, Navarro-Pedreño J, Koch M, Gómez I, Hernández EI. Land-Cover Phenologies and Their Relation to Climatic Variables in an Anthropogenically Impacted Mediterranean Coastal Area. Remote Sensing. 2010; 2(3):697-716. https://doi.org/10.3390/rs2030697
Chicago/Turabian StyleMelendez-Pastor, Ignacio, Jose Navarro-Pedreño, Magaly Koch, Ignacio Gómez, and Encarni I. Hernández. 2010. "Land-Cover Phenologies and Their Relation to Climatic Variables in an Anthropogenically Impacted Mediterranean Coastal Area" Remote Sensing 2, no. 3: 697-716. https://doi.org/10.3390/rs2030697
APA StyleMelendez-Pastor, I., Navarro-Pedreño, J., Koch, M., Gómez, I., & Hernández, E. I. (2010). Land-Cover Phenologies and Their Relation to Climatic Variables in an Anthropogenically Impacted Mediterranean Coastal Area. Remote Sensing, 2(3), 697-716. https://doi.org/10.3390/rs2030697