Sensitivity Analysis of b-factor in Microwave Emission Model for Soil Moisture Retrieval: A Case Study for SMAP Mission
Abstract
:1. Introduction
2. Study Area and Data Sets
PALS flight line | SGP 99 Little Washita site ID |
---|---|
Line 9 | LW 21, 22, 23 |
Line 10 | LW 3, 4, 5 |
3. Microwave Emission Retrieval Model
4. Sensitivity Analysis of Vegetation b-factor
4.1. Relative Sensitivity Analysis
Variables | Condition | Tb(K) using min and max range | ∆ | Relative Sensitivity (%) | |
min | max | ||||
soil moisture (Sm) (range:0.05–0.45) | base | 257.3 | 164.0 | 93 | 100 |
veg water content (Wc) (range:0.1–6.0) | base | 276.8 | 203.6 | 73 | 78.5 |
b-factor (range:0– 0.5) | Sm = 0.05 | 254.0 | 274.3 | 20.3 | 21.7 |
Sm =0.45 | 151.4 | 231.7 | 80.3 | 86.1 | |
Wc =0.1 | 200.2 | 211.0 | 10.7 | 11.5 | |
Wc = 6.0 | 200.2 | 282.2 | 82.0 | 88.2 | |
surface roughness (range:0–0.3) | Sm = 0.05 | 255.9 | 266.9 | 11.0 | 11.9 |
Sm = 0.45 | 160.9 | 196.5 | 35.7 | 38.3 | |
Wc = 0.1 | 192.3 | 220.1 | 27.9 | 30.0 | |
Wc = 6.0 | 265.6 | 272.0 | 6.4 | 6.9 | |
surface temp (k) (range:270–320) | Sm = 0.05 | 236.4 | 272.5 | 36.1 | 38.7 |
Sm = 0.45 | 159.2 | 175.7 | 16.5 | 17.7 | |
Wc = 0.1 | 182.9 | 208.7 | 25.7 | 27.6 | |
Wc = 6.0 | 270.5 | 279.9 | 9.4 | 10.1 |
Parameter | Base value | unit |
---|---|---|
Volumetric soil moisture | 0.2 | - |
Vegetation water content | 0.7 | kg m−2 |
b-factor | 0.1 | - |
Surface roughness | 0.1 | - |
Surface temperature | 300 | K |
Viewing angle | 40 | degree |
Bulk soil density | 1.2 | g/ cm3 |
Specific soil density | 2.59 | g/ cm3 |
Soil composition (clay) | 0.15 | - |
Soil composition (sand) | 0.20 | - |
Source | ƒ(GHz) | Vegetation type | b-factor | Vegetation water content (kg/m2) |
---|---|---|---|---|
Jackson and O’neill [24] | 1.4 | Corn | 0.115 | 2.7 to 4.5 |
Ulaby, Ranzani et al.[25] | 1.4 | Corn | 0.113 | 4.0 |
Jackson, Schmugge et al.[13] | 1.4 | Corn | 0.133 | 1.2 |
O'Neill, Jackson et al.[22] | 1.4 | Corn | 0.102 | 6.0 |
Parde et al.[23] | 1.4 | Corn | 0.26 ± 0.04 | - |
Jackson and O'neill[24] | 1.4 | Soybean | 0.086 | - |
Ulaby and Wilson [26] | 1.6 | Soybean | 0.100 | 1.8 |
Jackson et al.[13] | 1.4 | Soybean | 0.087 | 1.0 |
Wigneron, Chanzy et al.[27] | 1.4 | Soybean | 0.19 ± 0.01 | - |
Haboudane, Chanzy et al.[28] | 1.4 | Soybean | 0.28 ±0.03 | - |
Burke, Wigneron et al.[29] | 1.4 | Soybean | 0.122 | 2.4 and 5.2 |
Parde et al.[23] | 1.4 | Soybean | 0.30 ± 0.02 | - |
Ulaby and Wilson [26] | 1.6 | Wheat | 0.050 | 5.2 |
Wigneron, Chanzy et al.[27] | 1.4 | Wheat | 0.12 ± 0.01 | - |
Haboudane, Chanzy et al.[28] | 1.4 | Wheat | 0.13 ± 0.01 | - |
Parde et al.[23] | 1.4 | Wheat | 0.11 ± 0.01 | - |
Chukhlantsev and Shutko [30] | 1.6 | Alfalfa | 0.182 | 2.0 |
Parde et al.[23] | 1.4 | Alfalfa | 0.54 ± 0.02 | - |
Wang [31] | 1.4 | Tall grass | 0.72 | 0.4 |
Parde et al.[23] | 1.4 | Tall grass | 0.56 ± 0.05 | - |
4.2. Field Application of Sensitivity Analysis
Site ID | Land cover | Vegetation water content (Wc) |
---|---|---|
LW3 | Rangeland | 2.38 kg/m2 |
LW4 | Rangeland | 0.48 kg/m2 |
LW5 | Rangeland | 0.34 kg/m2 |
LW21 | Wheat | 0.12 kg/m2 |
LW22 | Wheat | 0.02 kg/m2 |
LW23 | Wheat | 0.36 kg/m2 |
LW 4,5 (Rangeland) | LW 21,22,23 (Wheat) | ||||||
b-factor | R | RMSE | Bias | b-factor | R | RMSE | Bias |
0.1 | 0.971 | 37.236 | 35.600 | 0.1 | 0.948 | 24.905 | 23.611 |
0.2 | 0.972 | 8.648 | −7.660 | 0.2 | 0.954 | 21.726 | 20.336 |
0.3 | 0.966 | 24.037 | 23.006 | 0.3 | 0.946 | 19.255 | 17.318 |
0.4 | 0.959 | 18.616 | 17.729 | 0.4 | 0.925 | 17.500 | 14.530 |
0.5 | 0.950 | 13.915 | 13.024 | 0.5 | 0.894 | 16.451 | 11.958 |
0.6 | 0.939 | 9.971 | 8.838 | 0.6 | 0.856 | 16.038 | 9.578 |
0.7 | 0.926 | 6.962 | 5.107 | 0.7 | 0.815 | 16.149 | 7.378 |
0.8 | 0.911 | 5.401 | 1.784 | 0.8 | 0.774 | 16.648 | 5.340 |
0.9 | 0.895 | 5.700 | −1.174 | 0.9 | 0.734 | 17.405 | 3.453 |
1.0 | 0.879 | 7.200 | −3.800 | 1.0 | 0.697 | 18.316 | 1.701 |
5. Summary and Conclusion
Acknowledgements
References and Notes
- Beljaars, A.C.M.; Viterbo, P.; Miller, M.J.; Betts, A.K. The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Weather Rev. 1996, 124, 362–383. [Google Scholar] [CrossRef]
- Jackson, T.J.; Vine, D.M.L.; Hsu, A.Y.; Oldak, A.; Starks, P.J.; Swift, C.T.; Isham, J.; Haken, M. Soil moisture mapping at regional scales using the microwave radiometry: the Southern Great Plains hydrology experiment. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2135–2151. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.; Fung, A. Microwave Remote Sensing Active and Passive From Theory to Applications; Artech House: Norwood, MA, USA, 1986. [Google Scholar]
- Jackson., T.J.; Vine, D.M.L.; Swift, C.T.; Schmugge, T.J.; Schiebe, F.R. Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita ’92. Remote Sens. Environ. 1995, 53, 27–37. [Google Scholar] [CrossRef]
- Lakhankar, T.; Ghedira, H.; Temimi, M.; Sengupta, M.; Khanbilvardi, R.; Blake, R. Non-parametric methods for soil moisture retrieval from satellite remote sensing data. Remote Sens. 2009, 1, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; Juglea, S.E.; Drinkwater, M.R.; Hahne, A.; MartAn-Neira, M.; Mecklenburg, S. The SMOS mission: New tool for monitoring key elements of the global water cycle. IEEE Trans. Geosci. Remote Sens. 2010, 98, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Entekhabi, D.; O’Neil, E.N.P.; Jackson, T.; Thomas, J.; Entin, J.; Eastwood, I. The soil moisure active/passive mission (SMAP). In Proceedings of IEEE Int. Geoscience Remote Sensing Symposium, Boston, MA, USA, July 2008.
- Kirdyashev, K.P.; Chukhlantsev, A.A.; Shutko, A.M. Microwave radiation of the Earth’s surface in the presence of a vegetation cover. Radio Eng. Electron. Phys. 1979, 24, 37–44. [Google Scholar]
- Wang, J.R.; Schmugge, T.J. An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. Geosci. Remote Sens. 1980, 18, 288–295. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave dielectric behavior of wet soil-part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 35–46. [Google Scholar] [CrossRef]
- Gao, H.; Wood, E.F. Using a microwave emission model to estimate soil moisture from ESTAR observation during SGP 99. J. Hydrometeorol. 2004, 5, 49–63. [Google Scholar] [CrossRef]
- Jackson, T.J.; Schmugge, T. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 1991, 36, 203–212. [Google Scholar] [CrossRef]
- Jackson, T.J.; Schmugge, T.J.; Wang, J.R. Passive microwave remote sensing of soil moisture under vegetation canopies. Water Resour. Res. 1982, 18, 1137–1142. [Google Scholar] [CrossRef]
- Van de Griend, A.A.; Wigneron, J.-P. The b-factor as a function of frequency and canopy type at H-polarization. IEEE Trans. Geosci. Remote Sens. 2004, 42, 786–794. [Google Scholar] [CrossRef]
- Jackson, T.J.; Vine, D.L.; Hsu, A.Y.; Oldak, A.; Starks, P.; Swift, C.; Isham, J.; Haken, M. Soil moisture mapping at regional scales using microwave radiometry: the Southern Great Plains Hydrology Experiment. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2136–2151. [Google Scholar] [CrossRef]
- Njoku, E.G.; Wilson, W.J.; Yueh, S.H.; Dinardo, S.J.; Li, F.K.; Jackson, T.J.; Lakshmi, V.; Bolten, J. Observations of soil moisture using a passive and actove low-frequency microwave airborne sensor during SGP99. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2659–2673. [Google Scholar] [CrossRef]
- Crow, W.T.; Chan, S.T.K.; Entekhabi, D.; Houser, P.R.; Hus, A.Y.; Jackson, T.J.; Njoku, E.G.; O’Neill, P.E.; Shi, J.; Zhan, X. An observing system simulation experiment for Hydrow radiometer-only soil moisture products. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1289–1303. [Google Scholar] [CrossRef]
- Ulaby, F.T.; El-Rayes, M.A. Microwave dielectric spectrum of vegetation Part II: Dual dispersion model. IEEE Trans. Geosci. Remote Sens. 1987, GE-25, 550–557. [Google Scholar] [CrossRef]
- Schmugge, T.J.; Jackson, T.J. A dielectric model of the vegetation effects on the microwave emission from soils. IEEE Trans. Geosci. Remote Sens. 1992, 30, 757–760. [Google Scholar] [CrossRef]
- Njoku, E.G.; Li, L. Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz. IEEE Trans. Geosci. Remote Sens. 1999, 37, 79–93. [Google Scholar] [CrossRef]
- Jones, A.S.; Vukicevic, T.; Vonder-Haar, T.H. A microwave satellite observational operator for variational data assimilation of soil moisture. J. Hydrometeorol. 2004, 5, 213–229. [Google Scholar] [CrossRef]
- O’Neill, P.E.; Jackson, T.J.; Blanchard, B.; van den Hoek, R.; Gould, W.; Wang, J.; Glazar, W.; McMurtey, J., III. The Effects of Vegetation and Soil Hydraulic Properties on Passive Microwave Sensing of Soil Moisture: Data Report for the 1982 Field Experiments; NASA Tech. Memorandum 85106; NASA: Greenbelt, MD, USA, 1983. [Google Scholar]
- Parde, M.; Wigneron, J.-P.; Chanzy, A.; Waldteufel, P.; Kerr, Y.; Huet, S. Retrieving surface soil moisture over a wheat field: Comparison of different methods. Remote Sens. Environ. 2003, 87, 334–344. [Google Scholar] [CrossRef]
- Jackson, T.J.; O’Neill, P.E. Attenuation of soil microwave emissivity by corn and soybeans at 1.4 and 5 GHz. IEEE Trans. Geosci. Remote Sens. 1990, GE-28, 978–980. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Ranzani, M.; Dobson, M.C. Effects of vegetation cover on the microwave radiometric sensitivity to soil moisture. IEEE Trans. Geosci. Remote Sens. 1983, GE-21, 51–61. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Wilson, E.W. Microwave attenuation properties of vegetation canopies. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 746–753. [Google Scholar] [CrossRef]
- Wigneron, J.-P.; Chanzy, A.; Calvet, J.-C.; Bruguier, N. A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields. Remote Sens. Environ. 1995, 51, 331–341. [Google Scholar] [CrossRef]
- Haboudane, D.; Chanzy, A.; Calvet, J.-C.; Wigneron, J.-P.; Bonn, F. Radiometrie micro-onde dans le cas des couverts vegetaux partiels: Etimation de la teneur en eau du soil. Can. J. Remote Sens., 1996, 22, 208–217. [Google Scholar] [CrossRef]
- Burke, E.J.; Wigneron, J.-P.; Gurney, R.J. The comparison of two models that determine the effects of a vegetation canopy on passive microwave emission. Hydrol. Earth. Syst. Sci 1999, 3, 439–444. [Google Scholar] [CrossRef]
- Chukhlantsev, A.A.; Shutko, A.M. An account of the effect of vegetation during remote microwave radiometric sounding of terrestrial deposits. Remote Sens. Earth Space 1988, 2, 67–72. [Google Scholar]
- Wang, J.; Shiue, J.; Engman, E.; McMurtrey, J.; Lawless, I.P.; Schmugge, T.J.; Jackson, T.J.; Gould, W.; Fuchs, J.; Calhoon, C.; Carnahan, T.; Hirschmann, E. Remote Measurements of Soil Moisture by Microwave Radiometers at Barc Test Site; Tech. Memo 80720; NASA: Greenbelt, MD, USA, 1980. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Seo, D.; Lakhankar, T.; Khanbilvardi, R. Sensitivity Analysis of b-factor in Microwave Emission Model for Soil Moisture Retrieval: A Case Study for SMAP Mission. Remote Sens. 2010, 2, 1273-1286. https://doi.org/10.3390/rs2051273
Seo D, Lakhankar T, Khanbilvardi R. Sensitivity Analysis of b-factor in Microwave Emission Model for Soil Moisture Retrieval: A Case Study for SMAP Mission. Remote Sensing. 2010; 2(5):1273-1286. https://doi.org/10.3390/rs2051273
Chicago/Turabian StyleSeo, Dugwon, Tarendra Lakhankar, and Reza Khanbilvardi. 2010. "Sensitivity Analysis of b-factor in Microwave Emission Model for Soil Moisture Retrieval: A Case Study for SMAP Mission" Remote Sensing 2, no. 5: 1273-1286. https://doi.org/10.3390/rs2051273
APA StyleSeo, D., Lakhankar, T., & Khanbilvardi, R. (2010). Sensitivity Analysis of b-factor in Microwave Emission Model for Soil Moisture Retrieval: A Case Study for SMAP Mission. Remote Sensing, 2(5), 1273-1286. https://doi.org/10.3390/rs2051273