Medium Spatial Resolution Satellite Imagery to Estimate Gross Primary Production in an Urban Area
Abstract
:1. Introduction
2. Research Methods
2.1. Research Location and Materials
2.2. Radiance Correction
ALOS/AVNIR-2 | Aster | ||
Band No | UCC | Band No | UCC |
1 | 0.588 | 1 | 0.676 |
2 | 0.573 | 2 | 0.708 |
3 | 0.502 | 3N | 0.862 |
4 | 0.835 |
2.3. Data Analysis
3. Results and Discussion
3.1. Results
Satellite | GPP (gC m−2 yr−1) | Total GPP tC yr−1 | ||
Max | Mean | Min | ||
ALOS/AVNIR-2 | 2,586.18 | 836.23 | 0.13 | 52,421.46 |
Aster | 2,595.26 | 776.83 | 0.14 | 59,355.49 |
GPP value (gC m−2 yr−1) | ALOS/AVNIR-2 | Aster | ||
Total pixels | Area (ha) | Total pixels | Area (ha) | |
< 250 | 123,662 | 1,236.62 | 75,314 | 1,694.56 |
250–500 | 101,694 | 1,016.94 | 59,523 | 1,339.27 |
500–750 | 88,378 | 883.78 | 49,242 | 1,107.94 |
750–1,000 | 76,929 | 769.29 | 42,346 | 952.78 |
1,000–1,250 | 70,423 | 704.23 | 36,175 | 813.94 |
1,250–1,500 | 61,249 | 612.49 | 30,336 | 682.56 |
1,500–1,750 | 52,544 | 525.44 | 24,785 | 557.66 |
1,750–2,000 | 34,440 | 344.40 | 14,900 | 335.25 |
2,000–2,250 | 15,720 | 157.20 | 6,990 | 157.27 |
> 2,250 | 1,717 | 17.17 | 293 | 6.59 |
Land use | Area (Ha) | GPP (gC m−2 yr−1) | Total GPP (tC yr−1) | ||||||
ALOS/AVNIR-2 | Aster | ALOS/ AVNIR-2 | Aster | ||||||
Max | Mean | Min | Max | Mean | Min | ||||
Settlement | 7,179.17 | 2,511.43 | 540.49 | 0.13 | 2,353.91 | 492.44 | 0.14 | 12,675.23 | 15,992.84 |
Rice field | 2,616.34 | 2,586.18 | 1,030.08 | 0.13 | 2,371.86 | 1,020.65 | 0.14 | 20,254.15 | 22,571.65 |
Forest (Mangrove) | 700.69 | 2,501.92 | 1,123.58 | 0.13 | 2,595.26 | 1,177.40 | 0.14 | 6,255.51 | 7,081.16 |
Shrub | 81.10 | 2,427.54 | 882.11 | 0.13 | 2,305.14 | 794.37 | 0.14 | 469.55 | 460.96 |
Perennial plant | 961.75 | 2,456.39 | 1,034.77 | 0.13 | 2,257.76 | 989.24 | 0.14 | 8,300.74 | 8,567.52 |
Dry land | 263.26 | 2,414.05 | 893.46 | 0.13 | 2,261.80 | 830.61 | 0.14 | 1,888.87 | 1,930.72 |
Bare land | 827.39 | 2,489.12 | 771.56 | 0.13 | 2,244.33 | 648.17 | 0.14 | 2,577.41 | 2,750.65 |
3.2. Discussion
4. Conclusion
Acknowledgments
References
- Malhi, Y.; Nobre, A.D.; Grace, J.; Kruijt, B.; Pereira, M.G.P.; Culf, A.; Scott, S. Carbon dioxide transfer over a central Amazonian rain forest. J. Geophys. Res. 1998, 103, 593–612. [Google Scholar] [CrossRef]
- Hazarika, M.K.; Yasuoka, Y. Estimation of Terrestrial Carbon Fluxes by integrating Remote Sensing with Ecosystem Modeling. Ph. D. Dissertation, University of Tokyo, Tokyo, Japan, 2002. [Google Scholar]
- Jenkins, J.P.; Richardson, A.D.; Braswell, B.H.; Ollinger, S.V.; Hollinger, D.Y.; Smith, M.L. Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agr. Forest Meteorol. 2007, 143, 64–79. [Google Scholar] [CrossRef]
- Hunt, E.R.; Fahnestock, J.T.; Smith, W.K.; Kelly, R.D.; Welker, J.M.; Reiners, W.A. Carbon Sequestration from Remotely Sensed NDVI and Net Ecosystem Exchange; Muttiah, R.S., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Ibrahim, A.B. An Analysis of Spatial and Temporal Variation of Net Primary Productivity over Peninsular Malaysia Using Satellite Data. Ph. D. Thesis, University Technologi Malaysia: Johor, Malaysia, 2006. [Google Scholar]
- Heinsch, F.A.; Reeves, M.; Votava, P.; Kang, S.; Milesi, C.; Zhao, M.; Glassy, J.; Jolly, W.M.; Loehman, R.; Bowker, C.F.; Kimball, J.S.; Nemani, R.R.; Running, S.W. User’s Guide GPP and NPP (MOD17A2/A3): Products NASA MODIS Land Algorithm; Version 2; The University of Montana: Missoula, MT, USA, 2003. [Google Scholar]
- Running, S.W.; Nemani, R.; Glassy, J.M.; Thornton, P.E. MODIS Daily Photosynthesis (PSN) and Annual Net Primary Production (NPP) Product (MOD17); Algorithm Theoretical Basis Document (ATBD), Version 3.0; The University of Montana: Missoula, MT, USA, 1999. [Google Scholar]
- Sims, D.A.; Luo, H.; Hastings, S.; Oechel, W.C.; Rahman, A.F.; Gamon, J.A. Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a southern California chaparral ecosystem. Remote Sens. Environ. 2006, 103, 289–303. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Inoue, Y.; Peñuelas, J.; Miyata, A.; Mano, M. Normalized difference spectral indices for estimating photosynthetic hyperspectral and CO2 flux measurements in rice. Remote Sens. Environ. 2008, 112, 156–172. [Google Scholar] [CrossRef]
- Turner, D.P.; Gowerb, S.T.; Cohenc, W.B.; Gregorya, M.; Maiersperger, T.K. Effects of spatial variability in light use efficiency on Satellite-Based NPP monitoring. Remote Sens. Environ. 2002, 80, 397–405. [Google Scholar] [CrossRef]
- Myneni, R.B.; Williams, D.L. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 1994, 49, 200–211. [Google Scholar] [CrossRef]
- Hooda, R.S.; Dye, D.G. Estimating carbon-fixation in India based on remote sensing data. In Proceedings of ACRS, Colombo, Sri Lanka, November 1996.
- La Puma, I.P.; Philippi, T.E.; Oberbauer, S.F. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 109, 225–236. [Google Scholar] [CrossRef]
- Hirano, T.; Harada, T.; Segah, H.; Limin, S.; June, T.; Hirata, R.; Osaki, M. CO2 exchange of a tropical peat swamp forest in central Kalimantan. In Proceedings of AsiaFlux Workshop 2005—International Workshop on Advanced Flux Network and Flux Evaluation, Fujiyoshida, Japan, August 24–26 2005.
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Zhang, Q. Satellite-based modeling of gross primary production in an evergreen needle leaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Saleska, S.; Hutyra, L.; de Camargo, P.; Wofsy, S.; Frolking, S.; Boles, S.; Keller, M.; Moore, B. Satellite-based modeling of Gross Primary Production in a seasonally moist tropical evergreen forest. Remote Sens. Environ. 2005, 94, 105–122. [Google Scholar] [CrossRef]
- Saleska, S.R.; Miller, S.D.; Matross, D.M.; Goulden, M.L.; Wofsy, S.C.; da Rocha, H.R.; de Camargo, P.B.; Crill, P.; Daube, B.C.; de Freitas, H.C.; Hutyra, L.; Keller, M.; Kirchhoff, V.; Menton, M.; Munger, J.W.; Pyle, E.H.; Rice, A.H.; Silva, H. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 2003, 302, 1554–1557. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, N.P. Estimating carbon sequestration in tropical rainforest using integrated remote sensing and ecosystem productivity modeling: A case study in Lebanan Concession Area, East Kalimantan, Indonesia. Ph.D. Thesis, International Institute for Geo-Information Science and Earth Observation (ITC), Enschede, The Netherlands, 2006. [Google Scholar]
- Gitelson, A.A.; Viña, A.; Masek, J.G.; Verma, S.B.; Suyker, A.E. Synoptic monitoring of Gross Primary Productivity of maize using Landsat data. IEEE Geosci. Remote Sens. Lett. 2008, 5, 133–137. [Google Scholar] [CrossRef]
- Liang, S.; Zheng, T.; Wang, D.; Wang, K.; Liu, R.; Tsay, S.; Running, S.; Townshend, J. Mapping high-resolution incident photosynthetically active radiation over land from polar-orbiting and geo stationary satellite data. Photogramm. Eng. Remote Sens. 2007, 73, 1085–1089. [Google Scholar]
- Yüksel, A.; Akay, A.E.; Gundogan, R. Using ASTER imagery in land use/cover classification of eastern Mediterranean landscapes according to CORINE land cover project. Sensors 2008, 8, 1237–1251. [Google Scholar] [CrossRef]
- Soegaard, H.; Møller-Jensen, L. Towards a spatial CO2 budget of a metropolitan region based on textural image classification and flux measurements. Remote Sens. Environ. 2003, 87, 283–294. [Google Scholar] [CrossRef]
- Tang, J. The Analysis of Spatial-Temporal Dynamics of Urban Landscape Structure: A Comparison of Two Petroleum-Oriented Cities. Ph.D. Dissertation, Texas State University, San Marcos, TX, USA, 2007. [Google Scholar]
- Li, F.; Kustas, W.P.; Anderson, M.C.; Prueger, J.H.; Scott, R.L. Effect of remote sensing spatial resolution on interpreting tower-based flux observations. Remote Sens. Environ. 2008, 112, 337–349. [Google Scholar] [CrossRef]
- Levin, N. Fundamentals of Remote Sensing. Available online: http://geography.huji.ac.il/personal/Noam%20Levin/1999-fundamentals-of-remote-sensing.pdf (accessed on 18 April 2010).
- Saunier, S.; Rodriguez, Y.; Mambimba, A.; Goryl, P.; Grimont, P.; Bouvet, M.; Viallefont, F.; Santer, R.; Chander, G. Consolidated Verification Report: AVNIR-2; GAEL Consultant: Champs-sur-Marne, France, 2006. [Google Scholar]
- Abrams, M; Hook, S. ASTER User Handbook: Version 2; Jet Propulsion Laboratory/California Institute of Technology: Pasadena, CA, USA, 2002. [Google Scholar]
- Horning, N. Global Land Vegetation: An Electronic Textbook; NASA Goddard Space Flight Center Earth Sciences Directorate Scientific and Educational Endeavors (SEE): Greenbelt, MD, USA, 2004. [Google Scholar]
- Waring, R.H.; Running, S.W. Forest Ecosystems: Analysis at Multiple Scales; Academic Press: New York, NY, USA, 1998. [Google Scholar]
- Ochi, S.; Shibasaki, R. Estimation of NPP based agricultural production for Asian countries using remote sensing data and GIS. In Proceedings of ACRS, Tokyo, Japan, November 22–25 1999.
- Kruse, F.A. The effects of spatial resolution, spectral resolution, and SNR on geologic mapping using hyperspectral data, northern Grapevine Mountains, Nevada. In Proceedings of the 9th JPL Airborne Earth Science Workshop; Jet Propulsion Laboratory Publication, NASA: Greenbelt, MD, USA, 2000; pp. 261–269. [Google Scholar]
- De Jong, S.M.; Van Der Meer, F.D. Remote Sensing Image Analysis: Including the Spatial Domain; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Rocchini, D. Effects of spatial and spectral resolution in estimating ecosystem Α-diversity by satellite imagery. Remote Sens. Environ. 2007, 111, 423–434. [Google Scholar] [CrossRef]
- Lizarazo, I. Urban land cover and land use classification using high spatial resolution images and spatial metrics. In Proceedings of the 2nd Workshop of the EARSeL SIG on Land Use and Land Cover, Bonn, Germany, September 2006; pp. 292–298.
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
As-syakur, A.R.; Osawa, T.; Adnyana, I.W.S. Medium Spatial Resolution Satellite Imagery to Estimate Gross Primary Production in an Urban Area. Remote Sens. 2010, 2, 1496-1507. https://doi.org/10.3390/rs2061496
As-syakur AR, Osawa T, Adnyana IWS. Medium Spatial Resolution Satellite Imagery to Estimate Gross Primary Production in an Urban Area. Remote Sensing. 2010; 2(6):1496-1507. https://doi.org/10.3390/rs2061496
Chicago/Turabian StyleAs-syakur, A. Rahman, Takahiro Osawa, and I. Wayan S. Adnyana. 2010. "Medium Spatial Resolution Satellite Imagery to Estimate Gross Primary Production in an Urban Area" Remote Sensing 2, no. 6: 1496-1507. https://doi.org/10.3390/rs2061496
APA StyleAs-syakur, A. R., Osawa, T., & Adnyana, I. W. S. (2010). Medium Spatial Resolution Satellite Imagery to Estimate Gross Primary Production in an Urban Area. Remote Sensing, 2(6), 1496-1507. https://doi.org/10.3390/rs2061496